These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 21433036

  • 1. Cell damage through pentose phosphate pathway in fetus fibroblast cells exposed to methyl mercury.
    Amoli JS, Barin A, Ebrahimi-Rad M, Sadighara P.
    J Appl Toxicol; 2011 Oct; 31(7):685-9. PubMed ID: 21433036
    [Abstract] [Full Text] [Related]

  • 2. Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells.
    Stummann TC, Hareng L, Bremer S.
    Toxicology; 2007 Dec 05; 242(1-3):130-43. PubMed ID: 17980949
    [Abstract] [Full Text] [Related]

  • 3. Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury.
    Ou YC, Thompson SA, Kirchner SC, Kavanagh TJ, Faustman EM.
    Toxicol Appl Pharmacol; 1997 Nov 05; 147(1):31-8. PubMed ID: 9356304
    [Abstract] [Full Text] [Related]

  • 4. Transketolase: observations in alcohol-related brain damage research.
    Alexander-Kaufman K, Harper C.
    Int J Biochem Cell Biol; 2009 Apr 05; 41(4):717-20. PubMed ID: 18490188
    [Abstract] [Full Text] [Related]

  • 5. Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells.
    Stummann TC, Hareng L, Bremer S.
    Toxicology; 2009 Mar 29; 257(3):117-26. PubMed ID: 19150642
    [Abstract] [Full Text] [Related]

  • 6. Oxoguanine glycosylase 1 (OGG1) protects cells from DNA double-strand break damage following methylmercury (MeHg) exposure.
    Ondovcik SL, Tamblyn L, McPherson JP, Wells PG.
    Toxicol Sci; 2012 Jul 29; 128(1):272-83. PubMed ID: 22523232
    [Abstract] [Full Text] [Related]

  • 7. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity.
    Ondovcik SL, Tamblyn L, McPherson JP, Wells PG.
    Toxicol Appl Pharmacol; 2013 Jul 01; 270(1):23-30. PubMed ID: 23566953
    [Abstract] [Full Text] [Related]

  • 8. Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology.
    Robinson JF, Theunissen PT, van Dartel DA, Pennings JL, Faustman EM, Piersma AH.
    Reprod Toxicol; 2011 Sep 01; 32(2):180-8. PubMed ID: 21664453
    [Abstract] [Full Text] [Related]

  • 9. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C, Duckworth J, Hermanson O, Ceccatelli S.
    J Neurochem; 2006 Apr 01; 97(1):69-78. PubMed ID: 16524380
    [Abstract] [Full Text] [Related]

  • 10. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice.
    Carvalho MC, Franco JL, Ghizoni H, Kobus K, Nazari EM, Rocha JB, Nogueira CW, Dafre AL, Müller YM, Farina M.
    Toxicology; 2007 Oct 08; 239(3):195-203. PubMed ID: 17703864
    [Abstract] [Full Text] [Related]

  • 11. Protection of cerebellar granule cells by tocopherols and tocotrienols against methylmercury toxicity.
    Shichiri M, Takanezawa Y, Uchida K, Tamai H, Arai H.
    Brain Res; 2007 Nov 28; 1182():106-15. PubMed ID: 17949699
    [Abstract] [Full Text] [Related]

  • 12. A physiologically based pharmacokinetic model for methyl mercury in the pregnant rat and fetus.
    Gray DG.
    Toxicol Appl Pharmacol; 1995 May 28; 132(1):91-102. PubMed ID: 7747289
    [Abstract] [Full Text] [Related]

  • 13. Low levels of methylmercury induce DNA damage in rats: protective effects of selenium.
    Grotto D, Barcelos GR, Valentini J, Antunes LM, Angeli JP, Garcia SC, Barbosa F.
    Arch Toxicol; 2009 Mar 28; 83(3):249-54. PubMed ID: 18754101
    [Abstract] [Full Text] [Related]

  • 14. Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice.
    Huang CF, Liu SH, Hsu CJ, Lin-Shiau SY.
    Toxicol Lett; 2011 Mar 25; 201(3):196-204. PubMed ID: 21195143
    [Abstract] [Full Text] [Related]

  • 15. Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K(+)-ATPase involved.
    Huang CF, Hsu CJ, Liu SH, Lin-Shiau SY.
    Toxicol Lett; 2008 Feb 15; 176(3):188-97. PubMed ID: 18191348
    [Abstract] [Full Text] [Related]

  • 16. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice.
    Havarinasab S, Björn E, Nielsen JB, Hultman P.
    Toxicol Appl Pharmacol; 2007 May 15; 221(1):21-8. PubMed ID: 17399758
    [Abstract] [Full Text] [Related]

  • 17. Substrate inhibition of transketolase.
    Solovjeva ON, Kovina MV, Kochetov GA.
    Biochim Biophys Acta; 2016 Mar 15; 1864(3):280-282. PubMed ID: 26708478
    [Abstract] [Full Text] [Related]

  • 18. Lymphocyte proliferative response and tissue distribution of methylmercury sulfide and chloride in exposed rats.
    Ortega HG, Lopez M, Salvaggio JE, Reimers R, Hsiao-Lin C, Bollinger JE, George W.
    J Toxicol Environ Health; 1997 Apr 25; 50(6):605-16. PubMed ID: 15279033
    [Abstract] [Full Text] [Related]

  • 19. Lethal and sublethal responses of an aquatic insect Culex quinquefasciatus (Diptera: Culicidae) challenged with individual and joint exposure to dissolved sodium selenate and methylmercury chloride.
    Jensen PD, Sorensen MA, Walton WE, Trumble JT.
    Environ Toxicol; 2007 Jun 25; 22(3):287-94. PubMed ID: 17497635
    [Abstract] [Full Text] [Related]

  • 20. The effect of glutathione depletion on methyl mercury-induced microtubule disassembly in cultured embryonal carcinoma cells.
    Graff RD, Philbert MA, Lowndes HE, Reuhl KR.
    Toxicol Appl Pharmacol; 1993 May 25; 120(1):20-8. PubMed ID: 8511779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.