These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


467 related items for PubMed ID: 21435034

  • 41. Functionally distinct RNA polymerase binding sites in the phage Mu mom promoter region.
    Balke V, Nagaraja V, Gindlesperger T, Hattman S.
    Nucleic Acids Res; 1992 Jun 11; 20(11):2777-84. PubMed ID: 1535436
    [Abstract] [Full Text] [Related]

  • 42. Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised.
    Shadrin A, Sheppard C, Severinov K, Matthews S, Wigneshweraraj S.
    Microbiology (Reading); 2012 Nov 11; 158(Pt 11):2753-2764. PubMed ID: 22977089
    [Abstract] [Full Text] [Related]

  • 43. The phage Mu middle promoter Pm contains a partial UP element.
    Ma J, Howe MM.
    G3 (Bethesda); 2015 Feb 02; 5(4):507-16. PubMed ID: 25645531
    [Abstract] [Full Text] [Related]

  • 44. Regional mutagenesis of the gene encoding the phage Mu late gene activator C identifies two separate regions important for DNA binding.
    Jiang Y, Howe MM.
    Nucleic Acids Res; 2008 Nov 02; 36(20):6396-405. PubMed ID: 18838393
    [Abstract] [Full Text] [Related]

  • 45. Activation of the bacteriophage Mu lys promoter by Mu C protein requires the sigma 70 subunit of Escherichia coli RNA polymerase.
    Margolin W, Howe MM.
    J Bacteriol; 1990 Mar 02; 172(3):1424-9. PubMed ID: 2137817
    [Abstract] [Full Text] [Related]

  • 46. Binding of the C-terminal domain of the alpha subunit of RNA polymerase to the phage mu middle promoter.
    Ma J, Howe MM.
    J Bacteriol; 2004 Dec 02; 186(23):7858-64. PubMed ID: 15547256
    [Abstract] [Full Text] [Related]

  • 47. Inhibition of Escherichia coli RNAp by T7 Gp2 protein: role of negatively charged strip of amino acid residues in Gp2.
    Sheppard C, Cámara B, Shadrin A, Akulenko N, Liu M, Baldwin G, Severinov K, Cota E, Matthews S, Wigneshweraraj SR.
    J Mol Biol; 2011 Apr 15; 407(5):623-32. PubMed ID: 21316373
    [Abstract] [Full Text] [Related]

  • 48. A mutation in T7 RNA polymerase that facilitates promoter clearance.
    Guillerez J, Lopez PJ, Proux F, Launay H, Dreyfus M.
    Proc Natl Acad Sci U S A; 2005 Apr 26; 102(17):5958-63. PubMed ID: 15831591
    [Abstract] [Full Text] [Related]

  • 49. A vector system that allows simple generation of mutant Escherichia coli RNA polymerase.
    Yang X, Ma C, Lewis P.
    Plasmid; 2014 Sep 26; 75():37-41. PubMed ID: 24992039
    [Abstract] [Full Text] [Related]

  • 50. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain.
    Wigneshweraraj SR, Burrows PC, Nechaev S, Zenkin N, Severinov K, Buck M.
    EMBO J; 2004 Oct 27; 23(21):4264-74. PubMed ID: 15470503
    [Abstract] [Full Text] [Related]

  • 51. Differential binding of RNA polymerase to the wild type Mu mom promoter and its C independent mutant: a theoretical analysis.
    Nair TM, Kulkarni BD, Nagaraja V.
    Biophys Chem; 1995 Feb 27; 53(3):241-5. PubMed ID: 7880960
    [Abstract] [Full Text] [Related]

  • 52. Association of ω with the C-Terminal Region of the β' Subunit Is Essential for Assembly of RNA Polymerase in Mycobacterium tuberculosis.
    Mao C, Zhu Y, Lu P, Feng L, Chen S, Hu Y.
    J Bacteriol; 2018 Jun 15; 200(12):. PubMed ID: 29632095
    [Abstract] [Full Text] [Related]

  • 53. Function of the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase in basal expression and integration host factor-mediated activation of the early promoter of bacteriophage Mu.
    van Ulsen P, Hillebrand M, Kainz M, Collard R, Zulianello L, van de Putte P, Gourse RL, Goosen N.
    J Bacteriol; 1997 Jan 15; 179(2):530-7. PubMed ID: 8990307
    [Abstract] [Full Text] [Related]

  • 54. Peptide-based investigation of the Escherichia coli RNA polymerase σ(70):core interface as target site.
    Hüsecken K, Negri M, Fruth M, Boettcher S, Hartmann RW, Haupenthal J.
    ACS Chem Biol; 2013 Apr 19; 8(4):758-66. PubMed ID: 23330640
    [Abstract] [Full Text] [Related]

  • 55. An RNA polymerase mutant deficient in DNA melting facilitates study of activation mechanism: application to an artificial activator of transcription.
    Sun L, Dove SL, Panaghie G, deHaseth PL, Hochschild A.
    J Mol Biol; 2004 Nov 05; 343(5):1171-82. PubMed ID: 15491604
    [Abstract] [Full Text] [Related]

  • 56. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis.
    Gross L, Chen WJ, McAllister WT.
    J Mol Biol; 1992 Nov 20; 228(2):488-505. PubMed ID: 1453459
    [Abstract] [Full Text] [Related]

  • 57. Com, the phage Mu mom translational activator, is a zinc-binding protein that binds specifically to its cognate mRNA.
    Hattman S, Newman L, Murthy HM, Nagaraja V.
    Proc Natl Acad Sci U S A; 1991 Nov 15; 88(22):10027-31. PubMed ID: 1835088
    [Abstract] [Full Text] [Related]

  • 58. Unusual interaction of RNA polymerase with the bacteriophage Mu middle promoter Pm in the absence of its activator protein Mor.
    Mo Y, Howe MM.
    Microbiologyopen; 2014 Aug 15; 3(4):470-83. PubMed ID: 24916637
    [Abstract] [Full Text] [Related]

  • 59. Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase.
    Monsalve M, Mencia M, Rojo F, Salas M.
    EMBO J; 1996 Jan 15; 15(2):383-91. PubMed ID: 8617213
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.