These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
693 related items for PubMed ID: 21436514
1. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. Pichiorri F, De Vico Fallani F, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kübler A, Mattia D. J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514 [Abstract] [Full Text] [Related]
2. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ, Kwon K, Im CH. J Neurosci Methods; 2009 Apr 30; 179(1):150-6. PubMed ID: 19428521 [Abstract] [Full Text] [Related]
3. Bispectrum-based feature extraction technique for devising a practical brain-computer interface. Shahid S, Prasad G. J Neural Eng; 2011 Apr 30; 8(2):025014. PubMed ID: 21436530 [Abstract] [Full Text] [Related]
4. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Clin Neurophysiol; 2009 Feb 30; 120(2):239-47. PubMed ID: 19121977 [Abstract] [Full Text] [Related]
5. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI. Townsend G, Graimann B, Pfurtscheller G. IEEE Trans Neural Syst Rehabil Eng; 2004 Jun 30; 12(2):258-65. PubMed ID: 15218939 [Abstract] [Full Text] [Related]
6. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR. Neurology; 2005 May 24; 64(10):1775-7. PubMed ID: 15911809 [Abstract] [Full Text] [Related]
12. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller KR. IEEE Trans Biomed Eng; 2008 Oct 24; 55(10):2452-62. PubMed ID: 18838371 [Abstract] [Full Text] [Related]
13. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Kaiser V, Bauernfeind G, Kreilinger A, Kaufmann T, Kübler A, Neuper C, Müller-Putz GR. Neuroimage; 2014 Jan 15; 85 Pt 1():432-44. PubMed ID: 23651839 [Abstract] [Full Text] [Related]
14. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces. Hermes D, Vansteensel MJ, Albers AM, Bleichner MG, Benedictus MR, Mendez Orellana C, Aarnoutse EJ, Ramsey NF. J Neural Eng; 2011 Apr 15; 8(2):025007. PubMed ID: 21436535 [Abstract] [Full Text] [Related]
16. A mu-rhythm matched filter for continuous control of a brain-computer interface. Krusienski DJ, Schalk G, McFarland DJ, Wolpaw JR. IEEE Trans Biomed Eng; 2007 Feb 15; 54(2):273-80. PubMed ID: 17278584 [Abstract] [Full Text] [Related]
18. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. Thomas KP, Guan C, Lau CT, Vinod AP, Ang KK. IEEE Trans Biomed Eng; 2009 Nov 15; 56(11 Pt 2):2730-3. PubMed ID: 19605314 [Abstract] [Full Text] [Related]