These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
643 related items for PubMed ID: 21437883
1. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W. Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [Abstract] [Full Text] [Related]
2. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO. Enzyme Microb Technol; 2012 Sep 10; 51(4):237-43. PubMed ID: 22883559 [Abstract] [Full Text] [Related]
3. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Kim NR, Yang J, Kwon H, An J, Choi W, Kim W. Appl Microbiol Biotechnol; 2013 Sep 10; 97(18):8227-38. PubMed ID: 23709042 [Abstract] [Full Text] [Related]
5. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Liu H, Yan M, Lai C, Xu L, Ouyang P. Appl Biochem Biotechnol; 2010 Jan 10; 160(2):574-82. PubMed ID: 19067246 [Abstract] [Full Text] [Related]
10. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae]. Liu H, Tang W, Lai C, Yan M, Xu L, Ouyang P. Sheng Wu Gong Cheng Xue Bao; 2009 Jun 10; 25(6):875-9. PubMed ID: 19777815 [Abstract] [Full Text] [Related]
17. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering. Zhao H, Li J, Han B, Li X, Chen J. J Ind Microbiol Biotechnol; 2014 May 10; 41(5):869-78. PubMed ID: 24633583 [Abstract] [Full Text] [Related]