These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
329 related items for PubMed ID: 21439386
1. Not one extrastriate body area: using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. Weiner KS, Grill-Spector K. Neuroimage; 2011 Jun 15; 56(4):2183-99. PubMed ID: 21439386 [Abstract] [Full Text] [Related]
2. Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis. Downing PE, Wiggett AJ, Peelen MV. J Neurosci; 2007 Jan 03; 27(1):226-33. PubMed ID: 17202490 [Abstract] [Full Text] [Related]
3. Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. Silson EH, Groen II, Kravitz DJ, Baker CI. J Vis; 2016 Jan 03; 16(6):14. PubMed ID: 27105060 [Abstract] [Full Text] [Related]
4. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Weiner KS, Grill-Spector K. Neuroimage; 2010 Oct 01; 52(4):1559-73. PubMed ID: 20457261 [Abstract] [Full Text] [Related]
5. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S. J Neurophysiol; 2009 May 01; 101(5):2581-600. PubMed ID: 19225169 [Abstract] [Full Text] [Related]
7. A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex. Silson EH, Chan AW, Reynolds RC, Kravitz DJ, Baker CI. J Neurosci; 2015 Aug 26; 35(34):11921-35. PubMed ID: 26311774 [Abstract] [Full Text] [Related]
8. The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. Kolster H, Janssens T, Orban GA, Vanduffel W. J Neurosci; 2014 Jul 30; 34(31):10168-91. PubMed ID: 25080580 [Abstract] [Full Text] [Related]
11. Retinotopic organization of human ventral visual cortex. Arcaro MJ, McMains SA, Singer BD, Kastner S. J Neurosci; 2009 Aug 26; 29(34):10638-52. PubMed ID: 19710316 [Abstract] [Full Text] [Related]
12. Direct Structural Connections between Auditory and Visual Motion-Selective Regions in Humans. Gurtubay-Antolin A, Battal C, Maffei C, Rezk M, Mattioni S, Jovicich J, Collignon O. J Neurosci; 2021 Mar 17; 41(11):2393-2405. PubMed ID: 33514674 [Abstract] [Full Text] [Related]
13. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. Cheng K, Fujita H, Kanno I, Miura S, Tanaka K. J Neurophysiol; 1995 Jul 17; 74(1):413-27. PubMed ID: 7472342 [Abstract] [Full Text] [Related]
14. Relating retinotopic and object-selective responses in human lateral occipital cortex. Sayres R, Grill-Spector K. J Neurophysiol; 2008 Jul 17; 100(1):249-67. PubMed ID: 18463186 [Abstract] [Full Text] [Related]
16. The Anatomical and Functional Organization of the Human Visual Pulvinar. Arcaro MJ, Pinsk MA, Kastner S. J Neurosci; 2015 Jul 08; 35(27):9848-71. PubMed ID: 26156987 [Abstract] [Full Text] [Related]
17. Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Matteau I, Kupers R, Ricciardi E, Pietrini P, Ptito M. Brain Res Bull; 2010 Jul 30; 82(5-6):264-70. PubMed ID: 20466041 [Abstract] [Full Text] [Related]
20. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Thompson JC, Baccus W. Neuroimage; 2012 Jan 02; 59(1):625-34. PubMed ID: 21839175 [Abstract] [Full Text] [Related] Page: [Next] [New Search]