These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 21440267
1. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Chen PJ, Su CH, Tseng CY, Tan SW, Cheng CH. Mar Pollut Bull; 2011; 63(5-12):339-46. PubMed ID: 21440267 [Abstract] [Full Text] [Related]
2. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Chen PJ, Tan SW, Wu WL. Environ Sci Technol; 2012 Aug 07; 46(15):8431-9. PubMed ID: 22747062 [Abstract] [Full Text] [Related]
3. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Chen PJ, Wu WL, Wu KC. Water Res; 2013 Aug 01; 47(12):3899-909. PubMed ID: 23548565 [Abstract] [Full Text] [Related]
4. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. Yang CH, Kung TA, Chen PJ. Environ Pollut; 2019 Sep 01; 252(Pt B):1920-1932. PubMed ID: 31227347 [Abstract] [Full Text] [Related]
9. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. Aquat Toxicol; 2009 Oct 04; 94(4):320-7. PubMed ID: 19699002 [Abstract] [Full Text] [Related]
10. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P, He F, Zhao D, Aiken B, Feldman L. J Contam Hydrol; 2010 Jul 30; 116(1-4):35-46. PubMed ID: 20542350 [Abstract] [Full Text] [Related]
11. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms. Yoon H, Pangging M, Jang MH, Hwang YS, Chang YS. Ecotoxicol Environ Saf; 2018 Nov 15; 163():436-443. PubMed ID: 30075446 [Abstract] [Full Text] [Related]
13. Nanoscale zerovalent iron particles induce differential cytotoxicity, genotoxicity, oxidative stress and hemolytic responses in human lymphocytes and erythrocytes in vitro. Ghosh I, Mukherjee A, Mukherjee A. J Appl Toxicol; 2019 Dec 15; 39(12):1623-1639. PubMed ID: 31355497 [Abstract] [Full Text] [Related]
14. Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Mylon SE, Sun Q, Waite TD. Chemosphere; 2010 Sep 15; 81(1):127-31. PubMed ID: 20619873 [Abstract] [Full Text] [Related]
17. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Pang SY, Jiang J, Ma J. Environ Sci Technol; 2011 Jan 01; 45(1):307-12. PubMed ID: 21133375 [Abstract] [Full Text] [Related]
18. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E, Bossa N, Wiesner MR, Gunsch CK. Sci Total Environ; 2016 Sep 15; 565():889-901. PubMed ID: 26897610 [Abstract] [Full Text] [Related]
19. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL. Environ Sci Technol; 2009 Jun 15; 43(12):4555-60. PubMed ID: 19603676 [Abstract] [Full Text] [Related]
20. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Aquat Toxicol; 2008 Sep 29; 89(4):251-6. PubMed ID: 18768225 [Abstract] [Full Text] [Related] Page: [Next] [New Search]