These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


905 related items for PubMed ID: 21440318

  • 1. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M, Bottaro A, Sozzi S, Schieppati M.
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [Abstract] [Full Text] [Related]

  • 2. Sensori-motor integration during stance: time adaptation of control mechanisms on adding or removing vision.
    Sozzi S, Monti A, De Nunzio AM, Do MC, Schieppati M.
    Hum Mov Sci; 2011 Apr; 30(2):172-89. PubMed ID: 20727610
    [Abstract] [Full Text] [Related]

  • 3. Leg muscle activity during tandem stance and the control of body balance in the frontal plane.
    Sozzi S, Honeine JL, Do MC, Schieppati M.
    Clin Neurophysiol; 2013 Jun; 124(6):1175-86. PubMed ID: 23294550
    [Abstract] [Full Text] [Related]

  • 4. The control of equilibrium in Parkinson's disease patients: delayed adaptation of balancing strategy to shifts in sensory set during a dynamic task.
    De Nunzio AM, Nardone A, Schieppati M.
    Brain Res Bull; 2007 Sep 28; 74(4):258-70. PubMed ID: 17720548
    [Abstract] [Full Text] [Related]

  • 5. Tonic postural lean after-effects influenced by support surface stability and dynamics.
    Wright WG.
    Hum Mov Sci; 2011 Apr 28; 30(2):238-48. PubMed ID: 20674053
    [Abstract] [Full Text] [Related]

  • 6. Proprioceptive impairment and postural orientation control in Parkinson's disease.
    Vaugoyeau M, Hakam H, Azulay JP.
    Hum Mov Sci; 2011 Apr 28; 30(2):405-14. PubMed ID: 21419506
    [Abstract] [Full Text] [Related]

  • 7. Effect of changing visual condition and frequency of horizontal oscillations on postural balance of standing healthy subjects.
    Cappa P, Patanè F, Rossi S, Petrarca M, Castelli E, Berthoz A.
    Gait Posture; 2008 Nov 28; 28(4):615-26. PubMed ID: 18539460
    [Abstract] [Full Text] [Related]

  • 8. Sensorimotor integration during stance: processing time of active or passive addition or withdrawal of visual or haptic information.
    Sozzi S, Do MC, Monti A, Schieppati M.
    Neuroscience; 2012 Jun 14; 212():59-76. PubMed ID: 22516013
    [Abstract] [Full Text] [Related]

  • 9. Head stabilization on a continuously oscillating platform: the effect of a proprioceptive disturbance on the balancing strategy.
    De Nunzio AM, Nardone A, Schieppati M.
    Exp Brain Res; 2005 Aug 14; 165(2):261-72. PubMed ID: 15856203
    [Abstract] [Full Text] [Related]

  • 10. Time to reconfigure balancing behaviour in man: changing visual condition while riding a continuously moving platform.
    De Nunzio AM, Schieppati M.
    Exp Brain Res; 2007 Mar 14; 178(1):18-36. PubMed ID: 17013618
    [Abstract] [Full Text] [Related]

  • 11. Muscle synergies involved in shifts of the center of pressure while standing on a narrow support.
    Wang Y, Asaka T.
    Brain Res Bull; 2008 May 15; 76(1-2):16-25. PubMed ID: 18395606
    [Abstract] [Full Text] [Related]

  • 12. Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance.
    Thompson C, Bélanger M, Fung J.
    Hum Mov Sci; 2011 Apr 15; 30(2):153-71. PubMed ID: 20580112
    [Abstract] [Full Text] [Related]

  • 13. Differences between body movement adaptation to calf and neck muscle vibratory proprioceptive stimulation.
    Gomez S, Patel M, Magnusson M, Johansson L, Einarsson EJ, Fransson PA.
    Gait Posture; 2009 Jul 15; 30(1):93-9. PubMed ID: 19398340
    [Abstract] [Full Text] [Related]

  • 14. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X, Aruin AS.
    J Electromyogr Kinesiol; 2009 Oct 15; 19(5):931-41. PubMed ID: 18614379
    [Abstract] [Full Text] [Related]

  • 15. Postural stability in the elderly: empirical confirmation of a theoretical model.
    Corriveau H, Hébert R, Raîche M, Dubois MF, Prince F.
    Arch Gerontol Geriatr; 2004 Oct 15; 39(2):163-77. PubMed ID: 15249153
    [Abstract] [Full Text] [Related]

  • 16. Review of first trial responses in balance control: influence of vestibular loss and Parkinson's disease.
    Allum JH, Tang KS, Carpenter MG, Oude Nijhuis LB, Bloem BR.
    Hum Mov Sci; 2011 Apr 15; 30(2):279-95. PubMed ID: 21435732
    [Abstract] [Full Text] [Related]

  • 17. Adaptation of balancing behaviour during continuous perturbations of stance. Supra-postural visual tasks and platform translation frequency modulate adaptation rate.
    Sozzi S, Nardone A, Schieppati M.
    PLoS One; 2020 Apr 15; 15(7):e0236702. PubMed ID: 32735602
    [Abstract] [Full Text] [Related]

  • 18. Differential effects of stimulus characteristics during knee joint perturbation on hamstring and quadriceps reflex responses.
    Bruhn S, Leukel C, Gollhofer A.
    Hum Mov Sci; 2011 Dec 15; 30(6):1079-91. PubMed ID: 22040837
    [Abstract] [Full Text] [Related]

  • 19. Effect of head position and visual condition on balance control in inverted stance.
    Asseman F, Gahéry Y.
    Neurosci Lett; 2005 Feb 28; 375(2):134-7. PubMed ID: 15670656
    [Abstract] [Full Text] [Related]

  • 20. Postural responses evoked by platform pertubations are dominated by continuous feedback.
    van der Kooij H, de Vlugt E.
    J Neurophysiol; 2007 Aug 28; 98(2):730-43. PubMed ID: 17460106
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 46.