These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


35 related items for PubMed ID: 2144094

  • 1. Correlations between the tissue redox-state and K(+)-contractures.
    Puppi A, Szekeres S, Dely M.
    Acta Physiol Hung; 1990; 75(3):253-9. PubMed ID: 2144094
    [Abstract] [Full Text] [Related]

  • 2. Influence of the redox-state potential of biophase on electrically stimulated skeletal muscles (myographic and voltage-clamp analysis).
    Puppi A, Nánási P, Dely M.
    Acta Physiol Hung; 1991; 77(1):33-41. PubMed ID: 1950591
    [Abstract] [Full Text] [Related]

  • 3. Relationship between the tissue redox state potential and dak/dt changes of [K+]0 activity during k-strophantoside or acetylcholine induced contractures.
    Wittmann I, Puppi A, Dely M.
    Acta Physiol Acad Sci Hung; 1982; 60(4):233-6. PubMed ID: 6985315
    [Abstract] [Full Text] [Related]

  • 4. Inverse modulation of extracellular Na+- and K+-activities by ascorbate or methylene blue.
    Puppi A, Wittmann I, Dely M.
    Gen Physiol Biophys; 1986 Apr; 5(2):187-91. PubMed ID: 3025056
    [Abstract] [Full Text] [Related]

  • 5. Redox agents modulate a(K+)0 changes evoked by acetylcholine and adrenaline in frog heart.
    Puppi A, Wittmann I, Dely M.
    Acta Physiol Hung; 1990 Apr; 76(1):61-9. PubMed ID: 2088012
    [Abstract] [Full Text] [Related]

  • 6. Redox state potential influences (+/-) delta [Na+]o activity values during acetylcholine contractures of frog skeletal muscles.
    Puppi A, Wittmann I, Dely M.
    Gen Pharmacol; 1982 Apr; 13(4):321-5. PubMed ID: 6751931
    [Abstract] [Full Text] [Related]

  • 7. Correlation between acetylcholine-evoked electrical activity, effect of cyclic AMP and actual redox state in frog rectus muscle.
    Puppi A, Práger P, Dely M.
    Acta Biochim Biophys Acad Sci Hung; 1981 Apr; 16(1-2):89-94. PubMed ID: 6278808
    [Abstract] [Full Text] [Related]

  • 8. Correlations between positive and negative aeroions, tissue redox-state potential and heart frequency in rats.
    Puppi A, Práger P, Szabó IT, Gábriel M, Dely M.
    Acta Physiol Hung; 1987 Apr; 70(1):41-9. PubMed ID: 3425333
    [Abstract] [Full Text] [Related]

  • 9. Cyclic AMP-mediated inhibition of noradrenaline-induced contraction and Ca2+ influx in guinea-pig vas deferens.
    Kato K, Furuya K, Tsutsui I, Ozaki T, Yamagishi S.
    Exp Physiol; 2000 Jul; 85(4):387-98. PubMed ID: 10918078
    [Abstract] [Full Text] [Related]

  • 10. [T-channels and Na+,Ca2+-exchangers as components of the Ca2+-system of the myocardial activity regulation of the frog Rana temporaria].
    Shemarova IV, Kuznetsov SV, Demina IN, Nesterov VP.
    Zh Evol Biokhim Fiziol; 2009 Jul; 45(3):319-28. PubMed ID: 19569558
    [Abstract] [Full Text] [Related]

  • 11. Modulation of caffeine contractures in mammalian skeletal muscles by variation of extracellular potassium.
    Gallant EM, Lentz LR, Taylor SR.
    J Cell Physiol; 1995 Nov; 165(2):254-60. PubMed ID: 7593203
    [Abstract] [Full Text] [Related]

  • 12. Correlations between redox-state potential changes in different tissues and the heart frequency in vivo.
    Szabó IT, Puppi A, Gábriel M, Dely M.
    Gen Physiol Biophys; 1986 Aug; 5(4):433-43. PubMed ID: 3770462
    [Abstract] [Full Text] [Related]

  • 13. Effect of acetylcholine on ion transport in the frog skeletal muscle.
    Kovács L, Szücs G, Török I.
    Acta Physiol Acad Sci Hung; 1981 Aug; 58(2):93-101. PubMed ID: 6978595
    [Abstract] [Full Text] [Related]

  • 14. [Nature of the phasic component of potassium contracture in the frog myocardium].
    Khodorov BI, Khodorova AB, Mukumov MR.
    Fiziol Zh SSSR Im I M Sechenova; 1984 Mar; 70(3):339-44. PubMed ID: 6609845
    [Abstract] [Full Text] [Related]

  • 15. Changes in autorhythmic heart frequency elicited by redox agents.
    Wittmann I, Puppi A, Dely M.
    Chem Biol Interact; 1987 Mar; 63(2):115-25. PubMed ID: 3311410
    [Abstract] [Full Text] [Related]

  • 16. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery.
    Shiraishi Y, Ohashi M, Kanmura Y, Yamaguchi S, Yoshimura N, Itoh T.
    Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252
    [Abstract] [Full Text] [Related]

  • 17. Correlations between the actual redox-state potential (E0') of biophase and heart activity in vivo.
    Puppi A, Dely M.
    Acta Physiol Hung; 1991 Jul; 77(1):43-56. PubMed ID: 1950592
    [Abstract] [Full Text] [Related]

  • 18. Effects of cyclopiazonic acid on membrane currents, contraction and intracellular calcium transients in frog heart.
    Badaoui A, Huchet-Cadiou C, Léoty C.
    J Mol Cell Cardiol; 1995 Nov; 27(11):2495-505. PubMed ID: 8596200
    [Abstract] [Full Text] [Related]

  • 19. [Effects of agonists and antagonists of rhyanodine receptors on potassium contractures in twitch and tonic frog skeletal muscle fibers].
    Katina IE, Nasledov GA.
    Biofizika; 2006 Nov; 51(5):898-905. PubMed ID: 17131831
    [Abstract] [Full Text] [Related]

  • 20. [Role of calcium in the contraction of normal tonic muscle fibers and following denervation].
    Lapshina IB, Nasledov GA.
    Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1215-22. PubMed ID: 6974659
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 2.