These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


361 related items for PubMed ID: 21448604

  • 1. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G, Nasir M, Ligler FS.
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Hydrodynamic focusing of conducting fluids for conductivity-based biosensors.
    Nasir M, Ateya DA, Burk D, Golden JP, Ligler FS.
    Biosens Bioelectron; 2010 Feb 15; 25(6):1363-9. PubMed ID: 19932019
    [Abstract] [Full Text] [Related]

  • 4. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S, Kim KH, Kim HC, Chung TD.
    Biosens Bioelectron; 2010 Feb 15; 25(6):1509-15. PubMed ID: 20004091
    [Abstract] [Full Text] [Related]

  • 5. Microfluidic based impedance biosensor for pathogens detection in food products.
    Abdullah A, Dastider SG, Jasim I, Shen Z, Yuksek N, Zhang S, Dweik M, Almasri M.
    Electrophoresis; 2019 Feb 15; 40(4):508-520. PubMed ID: 30556147
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A microfluidic-based frequency-multiplexing impedance sensor (FMIS).
    Meissner R, Joris P, Eker B, Bertsch A, Renaud P.
    Lab Chip; 2012 Aug 07; 12(15):2712-8. PubMed ID: 22627460
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels.
    Segerink LI, Sprenkels AJ, Bomer JG, Vermes I, van den Berg A.
    Lab Chip; 2011 Jun 21; 11(12):1995-2001. PubMed ID: 21279234
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L, Wang H, Wang L, Mitchelson K, Yu Z, Cheng J.
    Biosens Bioelectron; 2008 Sep 15; 24(1):14-21. PubMed ID: 18511255
    [Abstract] [Full Text] [Related]

  • 16. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement.
    Kim M, Jung T, Kim Y, Lee C, Woo K, Seol JH, Yang S.
    Biosens Bioelectron; 2015 Dec 15; 74():1011-5. PubMed ID: 26264268
    [Abstract] [Full Text] [Related]

  • 17. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications.
    MacKay S, Hermansen P, Wishart D, Chen J.
    Sensors (Basel); 2015 Sep 02; 15(9):22192-208. PubMed ID: 26364638
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG, Choi S, Park JK.
    Lab Chip; 2009 Nov 07; 9(21):3155-60. PubMed ID: 19823733
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.