These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 21448654
21. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH, Wang XL, Zhang G, He YX, Wang XH, Liu Z, He K, Peng J, Leng Y, Qin L. Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [Abstract] [Full Text] [Related]
22. In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite. Hakimimehr D, Liu DM, Troczynski T. Biomaterials; 2005 Dec; 26(35):7297-303. PubMed ID: 16026822 [Abstract] [Full Text] [Related]
23. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. Shahbazi S, Moztarzadeh F, Sadeghi GM, Jafari Y. Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():1201-9. PubMed ID: 27612818 [Abstract] [Full Text] [Related]
24. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR. Biomacromolecules; 2004 Dec 01; 5(5):1990-8. PubMed ID: 15360315 [Abstract] [Full Text] [Related]
25. Platelet-derived growth factor enhancement of two alloplastic bone matrices. Bateman J, Intini G, Margarone J, Goodloe S, Bush P, Lynch SE, Dziak R. J Periodontol; 2005 Nov 01; 76(11):1833-41. PubMed ID: 16274301 [Abstract] [Full Text] [Related]
26. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. Mistry AS, Cheng SH, Yeh T, Christenson E, Jansen JA, Mikos AG. J Biomed Mater Res A; 2009 Apr 01; 89(1):68-79. PubMed ID: 18428800 [Abstract] [Full Text] [Related]
27. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Hedberg EL, Shih CK, Lemoine JJ, Timmer MD, Liebschner MA, Jansen JA, Mikos AG. Biomaterials; 2005 Jun 01; 26(16):3215-25. PubMed ID: 15603816 [Abstract] [Full Text] [Related]
28. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold. Cao L, Duan PG, Wang HR, Li XL, Yuan FL, Fan ZY, Li SM, Dong J. Int J Nanomedicine; 2012 Jun 01; 7():5881-8. PubMed ID: 23226019 [Abstract] [Full Text] [Related]
29. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. Hedberg EL, Tang A, Crowther RS, Carney DH, Mikos AG. J Control Release; 2002 Dec 05; 84(3):137-50. PubMed ID: 12468217 [Abstract] [Full Text] [Related]
30. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, Yoshikawa T, Sugiura Y, Ueda M. J Craniofac Surg; 2002 Mar 05; 13(2):231-9; discussion 240-3. PubMed ID: 12000879 [Abstract] [Full Text] [Related]
31. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M, Guda T, Runge MB, Mijares D, LeGeros RZ, LeGeros JP, Silliman DT, Lu L, Wenke JC, Brown Baer PR, Yaszemski MJ. Acta Biomater; 2015 May 05; 18():9-20. PubMed ID: 25575855 [Abstract] [Full Text] [Related]
32. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Biomaterials; 2019 Jul 05; 208():45-71. PubMed ID: 30991217 [Abstract] [Full Text] [Related]
33. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions. Domb AJ, Manor N, Elmalak O. Biomaterials; 1996 Feb 05; 17(4):411-7. PubMed ID: 8938235 [Abstract] [Full Text] [Related]
34. In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. Timmer MD, Shin H, Horch RA, Ambrose CG, Mikos AG. Biomacromolecules; 2003 Feb 05; 4(4):1026-33. PubMed ID: 12857088 [Abstract] [Full Text] [Related]
35. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L. J Tissue Eng Regen Med; 2015 Aug 05; 9(8):961-72. PubMed ID: 23255530 [Abstract] [Full Text] [Related]
36. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H, Kuboyama N. Bone; 2010 Feb 05; 46(2):386-95. PubMed ID: 19800045 [Abstract] [Full Text] [Related]
37. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W, Hu YY, Wei YY, Pang L, Lv R, Bai JP, Xiong Z, Jiang M. Cells Tissues Organs; 2008 Feb 05; 187(2):89-102. PubMed ID: 17938566 [Abstract] [Full Text] [Related]
38. Poly(propylene fumarate) and poly(DL-lactic-co-glycolic acid) as scaffold materials for solid and foam-coated composite tissue-engineered constructs for cranial reconstruction. Dean D, Topham NS, Meneghetti SC, Wolfe MS, Jepsen K, He S, Chen JE, Fisher JP, Cooke M, Rimnac C, Mikos AG. Tissue Eng; 2003 Jun 05; 9(3):495-504. PubMed ID: 12857417 [Abstract] [Full Text] [Related]
39. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Chu TM, Warden SJ, Turner CH, Stewart RL. Biomaterials; 2007 Jan 05; 28(3):459-67. PubMed ID: 16996588 [Abstract] [Full Text] [Related]
40. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, Jansen JA. J Biomed Mater Res; 2002 Mar 05; 59(3):547-56. PubMed ID: 11774313 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]