These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 21454069
1. One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh. Feng C, Wan Q, Lv Z, Yue X, Chen Y, Wei C. Biosens Bioelectron; 2011 May 15; 26(9):3953-7. PubMed ID: 21454069 [Abstract] [Full Text] [Related]
2. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Feng C, Ma L, Li F, Mai H, Lang X, Fan S. Biosens Bioelectron; 2010 Feb 15; 25(6):1516-20. PubMed ID: 19889528 [Abstract] [Full Text] [Related]
3. Anthraquinone-2-sulfonate immobilized to conductive polypyrrole hydrogel as a bioanode to enhance power production in microbial fuel cell. Tang X, Ng HY. Bioresour Technol; 2017 Nov 15; 244(Pt 1):452-455. PubMed ID: 28800554 [Abstract] [Full Text] [Related]
4. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Zhang F, Saito T, Cheng S, Hickner MA, Logan BE. Environ Sci Technol; 2010 Feb 15; 44(4):1490-5. PubMed ID: 20099808 [Abstract] [Full Text] [Related]
5. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell. You SJ, Wang XH, Zhang JN, Wang JY, Ren NQ, Gong XB. Biosens Bioelectron; 2011 Jan 15; 26(5):2142-6. PubMed ID: 20947329 [Abstract] [Full Text] [Related]
6. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells. Esmaeili C, Ghasemi M, Heng LY, Hassan SHA, Abdi MM, Daud WRW, Ilbeygi H, Ismail AF. Carbohydr Polym; 2014 Dec 19; 114():253-259. PubMed ID: 25263889 [Abstract] [Full Text] [Related]
7. Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Song TS, Yan ZS, Zhao ZW, Jiang HL. Bioprocess Biosyst Eng; 2011 Jun 19; 34(5):621-7. PubMed ID: 21221652 [Abstract] [Full Text] [Related]
8. Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells. Khilari S, Pandit S, Das D, Pradhan D. Biosens Bioelectron; 2014 Apr 15; 54():534-40. PubMed ID: 24333931 [Abstract] [Full Text] [Related]
9. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode. Zhang Y, Li J, Bai J, Li L, Xia L, Chen S, Zhou B. Water Res; 2017 Nov 15; 125():259-269. PubMed ID: 28865375 [Abstract] [Full Text] [Related]
10. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Chen S, Chen Y, He G, He S, Schröder U, Hou H. Biosens Bioelectron; 2012 Apr 15; 34(1):282-5. PubMed ID: 22336437 [Abstract] [Full Text] [Related]
11. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Dumas C, Mollica A, Féron D, Basseguy R, Etcheverry L, Bergel A. Bioresour Technol; 2008 Dec 15; 99(18):8887-94. PubMed ID: 18558485 [Abstract] [Full Text] [Related]
12. Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnOx-doped polypyrrole film electrodes. Sun J, Cai B, Xu W, Huang Y, Zhang Y, Peng Y, Chang K, Kuo J, Chen K, Ning X, Liu G, Wang Y, Yang Z, Liu J. Bioresour Technol; 2017 Feb 15; 225():40-47. PubMed ID: 27875767 [Abstract] [Full Text] [Related]
13. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells. Song TS, Peng-Xiao, Wu XY, Zhou CC. Appl Biochem Biotechnol; 2013 Jul 15; 170(5):1241-50. PubMed ID: 23657903 [Abstract] [Full Text] [Related]
14. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Tang X, Li H, Du Z, Ng HY. Bioresour Technol; 2014 Jul 15; 164():184-8. PubMed ID: 24859209 [Abstract] [Full Text] [Related]
15. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A. Yu JC, Krushkova S, Lai EP, Dabek-Zlotorzynska E. Anal Bioanal Chem; 2005 Aug 15; 382(7):1534-40. PubMed ID: 15951999 [Abstract] [Full Text] [Related]
16. Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells. Sharma I, Ghangrekar MM. Water Sci Technol; 2018 Feb 15; 77(3-4):999-1006. PubMed ID: 29488963 [Abstract] [Full Text] [Related]
17. A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell. Gong XB, You SJ, Wang XH, Zhang JN, Gan Y, Ren NQ. Biosens Bioelectron; 2014 May 15; 55():237-41. PubMed ID: 24384266 [Abstract] [Full Text] [Related]
18. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs. Hou J, Liu Z, Li Y, Yang S, Zhou Y. Bioprocess Biosyst Eng; 2015 May 15; 38(5):881-8. PubMed ID: 25428842 [Abstract] [Full Text] [Related]
19. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Zou Y, Pisciotta J, Baskakov IV. Bioelectrochemistry; 2010 Aug 15; 79(1):50-6. PubMed ID: 19969509 [Abstract] [Full Text] [Related]
20. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. Sharma M, Jain P, Varanasi JL, Lal B, Rodríguez J, Lema JM, Sarma PM. Bioresour Technol; 2013 Dec 15; 150():172-80. PubMed ID: 24161648 [Abstract] [Full Text] [Related] Page: [Next] [New Search]