These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 21458229

  • 1. The pedunculopontine nucleus as an additional target for deep brain stimulation.
    Lourens MA, Meijer HG, Heida T, Marani E, van Gils SA.
    Neural Netw; 2011 Aug; 24(6):617-30. PubMed ID: 21458229
    [Abstract] [Full Text] [Related]

  • 2. Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model.
    Alam M, Heissler HE, Schwabe K, Krauss JK.
    Exp Neurol; 2012 Jan; 233(1):233-42. PubMed ID: 22036687
    [Abstract] [Full Text] [Related]

  • 3. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson's disease: which target?
    Follett KA, Torres-Russotto D.
    Parkinsonism Relat Disord; 2012 Jan; 18 Suppl 1():S165-7. PubMed ID: 22166422
    [Abstract] [Full Text] [Related]

  • 4. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.
    Humphries MD, Gurney K.
    Eur J Neurosci; 2012 Jul; 36(2):2240-51. PubMed ID: 22805068
    [Abstract] [Full Text] [Related]

  • 5. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease.
    Moreau C, Defebvre L, Destée A, Bleuse S, Clement F, Blatt JL, Krystkowiak P, Devos D.
    Neurology; 2008 Jul 08; 71(2):80-4. PubMed ID: 18420482
    [Abstract] [Full Text] [Related]

  • 6. Frequency-selectivity of a thalamocortical relay neuron during Parkinson's disease and deep brain stimulation: a computational study.
    Cagnan H, Meijer HG, van Gils SA, Krupa M, Heida T, Rudolph M, Wadman WJ, Martens HC.
    Eur J Neurosci; 2009 Oct 08; 30(7):1306-17. PubMed ID: 19788577
    [Abstract] [Full Text] [Related]

  • 7. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.
    Kumaravelu K, Brocker DT, Grill WM.
    J Comput Neurosci; 2016 Apr 08; 40(2):207-29. PubMed ID: 26867734
    [Abstract] [Full Text] [Related]

  • 8. High-frequency stimulation of the subthalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indirect activation of inhibitory pallidal fibres in the rat.
    Florio T, Scarnati E, Confalone G, Minchella D, Galati S, Stanzione P, Stefani A, Mazzone P.
    Eur J Neurosci; 2007 Feb 08; 25(4):1174-86. PubMed ID: 17331213
    [Abstract] [Full Text] [Related]

  • 9. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.
    During MJ, Kaplitt MG, Stern MB, Eidelberg D.
    Hum Gene Ther; 2001 Aug 10; 12(12):1589-91. PubMed ID: 11529246
    [Abstract] [Full Text] [Related]

  • 10. Effect of globus pallidus internus stimulation on neuronal activity in the pedunculopontine tegmental nucleus in the primate model of Parkinson's disease.
    Zhang J, Wang ZI, Baker KB, Vitek JL.
    Exp Neurol; 2012 Jan 10; 233(1):575-80. PubMed ID: 21821025
    [Abstract] [Full Text] [Related]

  • 11. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.
    Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC.
    J Neurophysiol; 2006 Sep 10; 96(3):1569-80. PubMed ID: 16738214
    [Abstract] [Full Text] [Related]

  • 12. Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model.
    Guo Y, Rubin JE, McIntyre CC, Vitek JL, Terman D.
    J Neurophysiol; 2008 Mar 10; 99(3):1477-92. PubMed ID: 18171706
    [Abstract] [Full Text] [Related]

  • 13. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.
    Park E, Song I, Jang DP, Kim IY.
    Neurosci Lett; 2014 Aug 08; 577():16-21. PubMed ID: 24928224
    [Abstract] [Full Text] [Related]

  • 14. Chronic pedunculopontine nucleus stimulation restores functional connectivity.
    Schweder PM, Joint C, Hansen PC, Green AL, Quaghebeur G, Aziz TZ.
    Neuroreport; 2010 Dec 08; 21(17):1065-8. PubMed ID: 20926975
    [Abstract] [Full Text] [Related]

  • 15. Pedunculopontine nucleus evoked potentials from subthalamic nucleus stimulation in Parkinson's disease.
    Neagu B, Tsang E, Mazzella F, Hamani C, Moro E, Hodaie M, Lozano AM, Chen R.
    Exp Neurol; 2013 Dec 08; 250():221-7. PubMed ID: 24095981
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation.
    Shils JL, Mei LZ, Arle JE.
    Stereotact Funct Neurosurg; 2008 Dec 08; 86(1):16-29. PubMed ID: 17881885
    [Abstract] [Full Text] [Related]

  • 18. c-Fos expression after deep brain stimulation of the pedunculopontine tegmental nucleus in the rat 6-hydroxydopamine Parkinson model.
    Saryyeva A, Nakamura M, Krauss JK, Schwabe K.
    J Chem Neuroanat; 2011 Nov 08; 42(3):210-7. PubMed ID: 21855627
    [Abstract] [Full Text] [Related]

  • 19. Deep brain stimulation.
    Breit S, Schulz JB, Benabid AL.
    Cell Tissue Res; 2004 Oct 08; 318(1):275-88. PubMed ID: 15322914
    [Abstract] [Full Text] [Related]

  • 20. Pedunculopontine nucleus microelectrode recordings in movement disorder patients.
    Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO.
    Exp Brain Res; 2008 Jun 08; 188(2):165-74. PubMed ID: 18347783
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.