These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2834 related items for PubMed ID: 21458551

  • 1. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S, Rabanel JM, Hildgen P.
    Int J Pharm; 2011 Jun 15; 411(1-2):178-87. PubMed ID: 21458551
    [Abstract] [Full Text] [Related]

  • 2. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S, Poulin S, Hildgen P.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):885-95. PubMed ID: 18228249
    [Abstract] [Full Text] [Related]

  • 3. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer.
    Shan X, Liu C, Yuan Y, Xu F, Tao X, Sheng Y, Zhou H.
    Colloids Surf B Biointerfaces; 2009 Sep 01; 72(2):303-11. PubMed ID: 19450955
    [Abstract] [Full Text] [Related]

  • 4. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles.
    Essa S, Rabanel JM, Hildgen P.
    Int J Pharm; 2010 Mar 30; 388(1-2):263-73. PubMed ID: 20060450
    [Abstract] [Full Text] [Related]

  • 5. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S, Rabanel JM, Hildgen P.
    Eur J Pharm Biopharm; 2010 Jun 30; 75(2):96-106. PubMed ID: 20211727
    [Abstract] [Full Text] [Related]

  • 6. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain.
    Parikh T, Bommana MM, Squillante E.
    Eur J Pharm Biopharm; 2010 Mar 30; 74(3):442-50. PubMed ID: 19941957
    [Abstract] [Full Text] [Related]

  • 7. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation.
    Yang A, Yang L, Liu W, Li Z, Xu H, Yang X.
    Int J Pharm; 2007 Feb 22; 331(1):123-32. PubMed ID: 17097246
    [Abstract] [Full Text] [Related]

  • 8. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.
    Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J.
    Colloids Surf B Biointerfaces; 2011 Oct 15; 87(2):454-63. PubMed ID: 21719259
    [Abstract] [Full Text] [Related]

  • 9. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.
    Giovino C, Ayensu I, Tetteh J, Boateng JS.
    Int J Pharm; 2012 May 30; 428(1-2):143-51. PubMed ID: 22405987
    [Abstract] [Full Text] [Related]

  • 10. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles.
    Essa S, Louhichi F, Raymond M, Hildgen P.
    J Microencapsul; 2013 May 30; 30(3):205-17. PubMed ID: 22894166
    [Abstract] [Full Text] [Related]

  • 11. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer.
    Chen J, Li S, Shen Q, He H, Zhang Y.
    Drug Dev Ind Pharm; 2011 Nov 30; 37(11):1339-46. PubMed ID: 21524153
    [Abstract] [Full Text] [Related]

  • 12. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.
    Zhang Z, Feng SS.
    Biomaterials; 2006 Jul 30; 27(21):4025-33. PubMed ID: 16564085
    [Abstract] [Full Text] [Related]

  • 13. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.
    Youm I, Youan BB.
    Hear Res; 2013 Oct 30; 304():7-19. PubMed ID: 23747541
    [Abstract] [Full Text] [Related]

  • 14. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density.
    Vila A, Gill H, McCallion O, Alonso MJ.
    J Control Release; 2004 Aug 11; 98(2):231-44. PubMed ID: 15262415
    [Abstract] [Full Text] [Related]

  • 15. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S, Thommes M, Hildgen P.
    Langmuir; 2008 Jan 01; 24(1):280-7. PubMed ID: 18052222
    [Abstract] [Full Text] [Related]

  • 16. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies.
    Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Unlü N.
    J Control Release; 2011 May 10; 151(3):286-94. PubMed ID: 21241752
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM, Faivre J, Tehrani SF, Lalloz A, Hildgen P, Banquy X.
    ACS Appl Mater Interfaces; 2015 May 20; 7(19):10374-85. PubMed ID: 25909493
    [Abstract] [Full Text] [Related]

  • 19. Nanoparticles of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery.
    Lee SH, Zhang Z, Feng SS.
    Biomaterials; 2007 Apr 20; 28(11):2041-50. PubMed ID: 17250886
    [Abstract] [Full Text] [Related]

  • 20. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.
    Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W.
    J Control Release; 2010 Apr 02; 143(1):136-42. PubMed ID: 20056123
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 142.