These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 2145974

  • 1. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles.
    Vercesi AE, Hermes-Lima M, Meyer-Fernandes JR, Vieyra A.
    Biochim Biophys Acta; 1990 Oct 24; 1020(1):101-6. PubMed ID: 2145974
    [Abstract] [Full Text] [Related]

  • 2. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?].
    Bronnikov GE, Vinogradova SO, Mezentseva VS, Samoĭlova EV.
    Biofizika; 1999 Oct 24; 44(3):465-73. PubMed ID: 10439862
    [Abstract] [Full Text] [Related]

  • 3. Demonstration and quantitation of catalytic and noncatalytic bound ATP in submitochondrial particles during oxidative phosphorylation.
    Gresser M, Cardon J, Rosen G, Boyer PD.
    J Biol Chem; 1979 Nov 10; 254(21):10649-53. PubMed ID: 159294
    [Abstract] [Full Text] [Related]

  • 4. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D, Boyer PD.
    Biochemistry; 1986 Jun 03; 25(11):3390-6. PubMed ID: 2873834
    [Abstract] [Full Text] [Related]

  • 5. The adenine nucleotide translocase modulates oligomycin-induced quenching of pyranine fluorescence in submitochondrial particles.
    Ziegler M, Penefsky HS.
    J Biol Chem; 1993 Dec 05; 268(34):25320-8. PubMed ID: 8244963
    [Abstract] [Full Text] [Related]

  • 6. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase.
    Sakamoto J.
    J Biochem; 1984 Aug 05; 96(2):475-81. PubMed ID: 6238951
    [Abstract] [Full Text] [Related]

  • 7. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV, Galkin MA, Sedlov AV, Vinogradov AD.
    Biochemistry (Mosc); 1999 Oct 05; 64(10):1128-37. PubMed ID: 10561559
    [Abstract] [Full Text] [Related]

  • 8. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M, Knox BE, Tsong TY.
    Biochim Biophys Acta; 1987 Oct 29; 894(1):16-28. PubMed ID: 2889470
    [Abstract] [Full Text] [Related]

  • 9. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-.
    García JJ, Tuena de Gómez-Puyou M, Gómez-Puyou A.
    J Bioenerg Biomembr; 1995 Feb 29; 27(1):127-36. PubMed ID: 7629044
    [Abstract] [Full Text] [Related]

  • 10. Unisite and multisite ATP hydrolysis and synthesis by bovine submitochondrial particles.
    Hatefi Y, Matsuno-Yagi A.
    Ann N Y Acad Sci; 1992 Nov 30; 671():377-84; discussion 385. PubMed ID: 1288334
    [No Abstract] [Full Text] [Related]

  • 11. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis.
    Matsuno-Yagi A, Hatefi Y.
    J Biol Chem; 1985 Nov 25; 260(27):11424-7. PubMed ID: 4055778
    [Abstract] [Full Text] [Related]

  • 12. Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis.
    Berkich DA, Williams GD, Masiakos PT, Smith MB, Boyer PD, LaNoue KF.
    J Biol Chem; 1991 Jan 05; 266(1):123-9. PubMed ID: 1824691
    [Abstract] [Full Text] [Related]

  • 13. Inhibition of oxidative phosphorylation by Ca2+ or Sr2+: a competition with Mg2+ for the formation of adenine nucleotide complexes.
    Fagian MM, da Silva LP, Vercesi AE.
    Biochim Biophys Acta; 1986 Dec 03; 852(2-3):262-8. PubMed ID: 3022807
    [Abstract] [Full Text] [Related]

  • 14. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity.
    Syroeshkin AV, Vasilyeva EA, Vinogradov AD.
    FEBS Lett; 1995 Jun 05; 366(1):29-32. PubMed ID: 7789510
    [Abstract] [Full Text] [Related]

  • 15. Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles.
    Matsuno-Yagi A, Hatefi Y.
    J Biol Chem; 1993 Jan 25; 268(3):1539-45. PubMed ID: 8380571
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis.
    Lodeyro AF, Calcaterra NB, Roveri OA.
    Biochim Biophys Acta; 2001 Nov 01; 1506(3):236-43. PubMed ID: 11779557
    [Abstract] [Full Text] [Related]

  • 17. Binding of adenine nucleotides to the F1-inhibitor protein complex of bovine heart submitochondrial particles.
    Martins OB, Salgado-Martins I, Grieco MA, Gómez-Puyou A, de Gómez-Puyou MT.
    Biochemistry; 1992 Jun 30; 31(25):5784-90. PubMed ID: 1610824
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA, Berden JA, Kemp A, Slater EC.
    Biochim Biophys Acta; 1985 Aug 28; 809(1):81-9. PubMed ID: 2862915
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.