These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


556 related items for PubMed ID: 21469227

  • 1. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants.
    Kumar D, Sastry GN, de Visser SP.
    Chemistry; 2011 May 23; 17(22):6196-205. PubMed ID: 21469227
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands.
    Kang Y, Chen H, Jeong YJ, Lai W, Bae EH, Shaik S, Nam W.
    Chemistry; 2009 Oct 05; 15(39):10039-46. PubMed ID: 19697378
    [Abstract] [Full Text] [Related]

  • 4. Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants.
    Pan Z, Zhang R, Newcomb M.
    J Inorg Biochem; 2006 Apr 05; 100(4):524-32. PubMed ID: 16500709
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP.
    J Am Chem Soc; 2010 Jan 27; 132(3):1087-97. PubMed ID: 20041691
    [Abstract] [Full Text] [Related]

  • 7. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes.
    Kumar D, Sastry GN, de Visser SP.
    J Phys Chem B; 2012 Jan 12; 116(1):718-30. PubMed ID: 22132821
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP, Tahsini L, Nam W.
    Chemistry; 2009 Jan 12; 15(22):5577-87. PubMed ID: 19347895
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L, Bagherzadeh M, Nam W, de Visser SP.
    Inorg Chem; 2009 Jul 20; 48(14):6661-9. PubMed ID: 19469505
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Predictive studies of H-atom abstraction reactions by an iron(IV)-oxo corrole cation radical oxidant.
    Latifi R, Valentine JS, Nam W, de Visser SP.
    Chem Commun (Camb); 2012 Apr 11; 48(29):3491-3. PubMed ID: 22377754
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Highly reactive electrophilic oxidants in cytochrome P450 catalysis.
    Newcomb M, Chandrasena RE.
    Biochem Biophys Res Commun; 2005 Dec 09; 338(1):394-403. PubMed ID: 16168951
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents.
    Wolak M, van Eldik R.
    Chemistry; 2007 Dec 09; 13(17):4873-83. PubMed ID: 17366654
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.