These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


391 related items for PubMed ID: 21472479

  • 1. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea.
    Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AG.
    J Assoc Res Otolaryngol; 2011 Aug; 12(4):455-69. PubMed ID: 21472479
    [Abstract] [Full Text] [Related]

  • 2. Unidirectional and stage-dependent roles of Notch1 in Wnt-responsive Lgr5+ cells during mouse inner ear development.
    Jiang H, Zeng S, Ni W, Chen Y, Li W.
    Front Med; 2019 Dec; 13(6):705-712. PubMed ID: 31598881
    [Abstract] [Full Text] [Related]

  • 3. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea.
    Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, Liu Z, Taketo MM, Oghalai JS, Nusse R, Zuo J, Cheng AG.
    Proc Natl Acad Sci U S A; 2012 May 22; 109(21):8167-72. PubMed ID: 22562792
    [Abstract] [Full Text] [Related]

  • 4. Dynamic expression of Lgr6 in the developing and mature mouse cochlea.
    Zhang Y, Chen Y, Ni W, Guo L, Lu X, Liu L, Li W, Sun S, Wang L, Li H.
    Front Cell Neurosci; 2015 May 22; 9():165. PubMed ID: 26029045
    [Abstract] [Full Text] [Related]

  • 5. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea.
    Jacques BE, Puligilla C, Weichert RM, Ferrer-Vaquer A, Hadjantonakis AK, Kelley MW, Dabdoub A.
    Development; 2012 Dec 01; 139(23):4395-404. PubMed ID: 23132246
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea.
    Smeti I, Watabe I, Savary E, Fontbonne A, Zine A.
    PLoS One; 2014 Dec 01; 9(2):e88757. PubMed ID: 24551154
    [Abstract] [Full Text] [Related]

  • 8. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells.
    Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AG.
    Development; 2013 Mar 01; 140(6):1196-206. PubMed ID: 23444352
    [Abstract] [Full Text] [Related]

  • 9. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea.
    Bramhall NF, Shi F, Arnold K, Hochedlinger K, Edge AS.
    Stem Cell Reports; 2014 Mar 11; 2(3):311-22. PubMed ID: 24672754
    [Abstract] [Full Text] [Related]

  • 10. The impact of targeted ablation of one row of outer hair cells and Deiters' cells on cochlear amplification.
    Xia A, Udagawa T, Quiñones PM, Atkinson PJ, Applegate BE, Cheng AG, Oghalai JS.
    J Neurophysiol; 2022 Nov 01; 128(5):1365-1373. PubMed ID: 36259670
    [Abstract] [Full Text] [Related]

  • 11. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea.
    Shi F, Kempfle JS, Edge AS.
    J Neurosci; 2012 Jul 11; 32(28):9639-48. PubMed ID: 22787049
    [Abstract] [Full Text] [Related]

  • 12. Characterization of Lgr5+ progenitor cell transcriptomes in the apical and basal turns of the mouse cochlea.
    Waqas M, Guo L, Zhang S, Chen Y, Zhang X, Wang L, Tang M, Shi H, Bird PI, Li H, Chai R.
    Oncotarget; 2016 Jul 05; 7(27):41123-41141. PubMed ID: 27070092
    [Abstract] [Full Text] [Related]

  • 13. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea.
    Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, Qi J, Zhou H, Zhu W, Yan X, Hong G, Zhang L, Zhang X, Tang M, Zhao C, Gao X, Chai R.
    Cell Mol Life Sci; 2020 Apr 05; 77(7):1401-1419. PubMed ID: 31485717
    [Abstract] [Full Text] [Related]

  • 14. LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine.
    Garcia MI, Ghiani M, Lefort A, Libert F, Strollo S, Vassart G.
    Dev Biol; 2009 Jul 01; 331(1):58-67. PubMed ID: 19394326
    [Abstract] [Full Text] [Related]

  • 15. Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway.
    Lu X, Sun S, Qi J, Li W, Liu L, Zhang Y, Chen Y, Zhang S, Wang L, Miao D, Chai R, Li H.
    Mol Neurobiol; 2017 Mar 01; 54(2):1326-1339. PubMed ID: 26843109
    [Abstract] [Full Text] [Related]

  • 16. Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner.
    Munnamalai V, Fekete DM.
    Development; 2016 Nov 01; 143(21):4003-4015. PubMed ID: 27633988
    [Abstract] [Full Text] [Related]

  • 17. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors.
    Shi F, Hu L, Edge AS.
    Proc Natl Acad Sci U S A; 2013 Aug 20; 110(34):13851-6. PubMed ID: 23918377
    [Abstract] [Full Text] [Related]

  • 18. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification.
    Murata J, Tokunaga A, Okano H, Kubo T.
    J Comp Neurol; 2006 Jul 20; 497(3):502-18. PubMed ID: 16736472
    [Abstract] [Full Text] [Related]

  • 19. Expression of Prox1 during mouse cochlear development.
    Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T.
    J Comp Neurol; 2006 May 10; 496(2):172-86. PubMed ID: 16538679
    [Abstract] [Full Text] [Related]

  • 20. Rbpj regulates development of prosensory cells in the mammalian inner ear.
    Yamamoto N, Chang W, Kelley MW.
    Dev Biol; 2011 May 15; 353(2):367-79. PubMed ID: 21420948
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.