These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
81 related items for PubMed ID: 21476196
1. Effective sample selection for classification of pre-miRNAs. Han K. Genet Mol Res; 2011 Mar 29; 10(1):506-18. PubMed ID: 21476196 [Abstract] [Full Text] [Related]
2. Genetic algorithm-based efficient feature selection for classification of pre-miRNAs. Xuan P, Guo MZ, Wang J, Wang CY, Liu XY, Liu Y. Genet Mol Res; 2011 Apr 12; 10(2):588-603. PubMed ID: 21491369 [Abstract] [Full Text] [Related]
3. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. Xue C, Li F, He T, Liu GP, Li Y, Zhang X. BMC Bioinformatics; 2005 Dec 29; 6():310. PubMed ID: 16381612 [Abstract] [Full Text] [Related]
4. microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Batuwita R, Palade V. Bioinformatics; 2009 Apr 15; 25(8):989-95. PubMed ID: 19233894 [Abstract] [Full Text] [Related]
5. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM. Wang Y, Chen X, Jiang W, Li L, Li W, Yang L, Liao M, Lian B, Lv Y, Wang S, Wang S, Li X. Genomics; 2011 Aug 15; 98(2):73-8. PubMed ID: 21586321 [Abstract] [Full Text] [Related]
6. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Ng KL, Mishra SK. Bioinformatics; 2007 Jun 01; 23(11):1321-30. PubMed ID: 17267435 [Abstract] [Full Text] [Related]
7. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y. Bioinformatics; 2011 May 15; 27(10):1368-76. PubMed ID: 21441575 [Abstract] [Full Text] [Related]
8. PMirP: a pre-microRNA prediction method based on structure-sequence hybrid features. Zhao D, Wang Y, Luo D, Shi X, Wang L, Xu D, Yu J, Liang Y. Artif Intell Med; 2010 Jun 15; 49(2):127-32. PubMed ID: 20399081 [Abstract] [Full Text] [Related]
9. New syntax to describe local continuous structure-sequence information for recognizing new pre-miRNAs. Wang M, Song X, Han P, Li W, Jiang B. J Theor Biol; 2010 May 21; 264(2):578-84. PubMed ID: 20202471 [Abstract] [Full Text] [Related]
10. Prediction of pre-miRNA with multiple stem-loops using pruning algorithm. Song X, Wang M, Chen YP, Wang H, Han P, Sun H. Comput Biol Med; 2013 Jun 21; 43(5):409-16. PubMed ID: 23566387 [Abstract] [Full Text] [Related]
11. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Mathelier A, Carbone A. Bioinformatics; 2010 Sep 15; 26(18):2226-34. PubMed ID: 20591903 [Abstract] [Full Text] [Related]
12. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. Nucleic Acids Res; 2007 Jul 15; 35(Web Server issue):W339-44. PubMed ID: 17553836 [Abstract] [Full Text] [Related]
13. Exploring cross-species-related miRNAs based on sequence and secondary structure. Chen F, Chen YP. IEEE Trans Biomed Eng; 2010 Jul 15; 57(7):1547-53. PubMed ID: 20199930 [Abstract] [Full Text] [Related]
14. Improving classification of mature microRNA by solving class imbalance problem. Wang Y, Li X, Tao B. Sci Rep; 2016 May 16; 6():25941. PubMed ID: 27181057 [Abstract] [Full Text] [Related]
15. OP-Triplet-ELM: Identification of real and pseudo microRNA precursors using extreme learning machine with optimal features. Pian C, Zhang J, Chen YY, Chen Z, Li Q, Li Q, Zhang LY. J Bioinform Comput Biol; 2016 Feb 16; 14(1):1650006. PubMed ID: 26707924 [Abstract] [Full Text] [Related]
16. Variable predictive model based classification algorithm for effective separation of protein structural classes. Raghuraj R, Lakshminarayanan S. Comput Biol Chem; 2008 Aug 16; 32(4):302-6. PubMed ID: 18462997 [Abstract] [Full Text] [Related]
17. MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs. Xuan P, Guo M, Huang Y, Li W, Huang Y. PLoS One; 2011 Aug 16; 6(11):e27422. PubMed ID: 22110646 [Abstract] [Full Text] [Related]
18. plantMirP: an efficient computational program for the prediction of plant pre-miRNA by incorporating knowledge-based energy features. Yao Y, Ma C, Deng H, Liu Q, Zhang J, Yi M. Mol Biosyst; 2016 Oct 20; 12(10):3124-31. PubMed ID: 27472470 [Abstract] [Full Text] [Related]
19. Improving gene expression cancer molecular pattern discovery using nonnegative principal component analysis. Han X. Genome Inform; 2008 Oct 20; 21():200-11. PubMed ID: 19425159 [Abstract] [Full Text] [Related]
20. Computational identification of novel microRNAs and targets in Brassica napus. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM. FEBS Lett; 2007 Apr 03; 581(7):1464-74. PubMed ID: 17367786 [Abstract] [Full Text] [Related] Page: [Next] [New Search]