These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 21478299
1. The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement. Jónsdóttir SH, Giesen EB, Maltha JC. Eur J Orthod; 2012 Oct; 34(5):542-6. PubMed ID: 21478299 [Abstract] [Full Text] [Related]
3. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):e59-71. PubMed ID: 21195258 [Abstract] [Full Text] [Related]
4. The biomechanical function of periodontal ligament fibres in orthodontic tooth movement. McCormack SW, Witzel U, Watson PJ, Fagan MJ, Gröning F. PLoS One; 2014 Jan; 9(7):e102387. PubMed ID: 25036099 [Abstract] [Full Text] [Related]
5. Time-dependent mechanical behaviour of the periodontal ligament. van Driel WD, van Leeuwen EJ, Von den Hoff JW, Maltha JC, Kuijpers-Jagtman AM. Proc Inst Mech Eng H; 2000 Jan; 214(5):497-504. PubMed ID: 11109857 [Abstract] [Full Text] [Related]
6. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study. Vikram NR, Senthil Kumar KS, Nagachandran KS, Hashir YM. Indian J Dent Res; 2012 Jan; 23(2):213-20. PubMed ID: 22945712 [Abstract] [Full Text] [Related]
7. Compressive force induces VEGF production in periodontal tissues. Miyagawa A, Chiba M, Hayashi H, Igarashi K. J Dent Res; 2009 Aug; 88(8):752-6. PubMed ID: 19734464 [Abstract] [Full Text] [Related]
8. Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement. Uhlir R, Mayo V, Lin PH, Chen S, Lee YT, Hershey G, Lin FC, Ko CC. Angle Orthod; 2017 Mar; 87(2):183-192. PubMed ID: 27542105 [Abstract] [Full Text] [Related]
9. A validated finite element method study of orthodontic tooth movement in the human subject. Jones ML, Hickman J, Middleton J, Knox J, Volp C. J Orthod; 2001 Mar; 28(1):29-38. PubMed ID: 11254801 [Abstract] [Full Text] [Related]
10. Morphological changes in the rat periodontal ligament and its vascularity after experimental tooth movement using superelastic forces. Noda K, Nakamura Y, Kogure K, Nomura Y. Eur J Orthod; 2009 Feb; 31(1):37-45. PubMed ID: 19073960 [Abstract] [Full Text] [Related]
11. Induction of osteopenia during experimental tooth movement in the rat: alveolar bone remodelling and the mechanostat theory. Milne TJ, Ichim I, Patel B, McNaughton A, Meikle MC. Eur J Orthod; 2009 Jun; 31(3):221-31. PubMed ID: 19458288 [Abstract] [Full Text] [Related]
13. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study. Liao Z, Chen J, Li W, Darendeliler MA, Swain M, Li Q. Arch Oral Biol; 2016 Jun; 66():98-107. PubMed ID: 26943815 [Abstract] [Full Text] [Related]
16. Correlation of stress and strain profiles and the distribution of osteoclastic cells induced by orthodontic loading in rat. Kawarizadeh A, Bourauel C, Zhang D, Götz W, Jäger A. Eur J Oral Sci; 2004 Apr; 112(2):140-7. PubMed ID: 15056111 [Abstract] [Full Text] [Related]