These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 21478323
1. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Appl Environ Microbiol; 2011 Jun; 77(11):3571-81. PubMed ID: 21478323 [Abstract] [Full Text] [Related]
2. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Lindner SN, Seibold GM, Krämer R, Wendisch VF. Bioeng Bugs; 2011 Jun; 2(5):291-5. PubMed ID: 22008639 [Abstract] [Full Text] [Related]
3. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [Abstract] [Full Text] [Related]
4. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619 [Abstract] [Full Text] [Related]
5. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Zhou Z, Wang C, Xu H, Chen Z, Cai H. J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119 [Abstract] [Full Text] [Related]
6. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Pérez-García F, Peters-Wendisch P, Wendisch VF. Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060 [Abstract] [Full Text] [Related]
7. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar. Xu JZ, Ruan HZ, Yu HB, Liu LM, Zhang W. Microb Cell Fact; 2020 Feb 18; 19(1):39. PubMed ID: 32070345 [Abstract] [Full Text] [Related]
8. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production. Xu JZ, Yu HB, Han M, Liu LM, Zhang WG. J Ind Microbiol Biotechnol; 2019 Jul 18; 46(7):937-949. PubMed ID: 30937555 [Abstract] [Full Text] [Related]
9. Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum. Bäumchen C, Krings E, Bringer S, Eggeling L, Sahm H. FEMS Microbiol Lett; 2009 Jan 18; 290(2):227-35. PubMed ID: 19054080 [Abstract] [Full Text] [Related]
10. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTSGlc) genes. Xu J, Zhang J, Liu D, Zhang W. Can J Microbiol; 2016 Dec 18; 62(12):983-992. PubMed ID: 27718589 [Abstract] [Full Text] [Related]
11. The glucose uptake systems in Corynebacterium glutamicum: a review. Ruan H, Yu H, Xu J. World J Microbiol Biotechnol; 2020 Jul 26; 36(9):126. PubMed ID: 32712859 [Abstract] [Full Text] [Related]
12. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM. Appl Environ Microbiol; 2013 Apr 26; 79(8):2588-95. PubMed ID: 23396334 [Abstract] [Full Text] [Related]
13. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. Moon MW, Park SY, Choi SK, Lee JK. J Mol Microbiol Biotechnol; 2007 Apr 26; 12(1-2):43-50. PubMed ID: 17183210 [Abstract] [Full Text] [Related]
14. Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM. Microbiology (Reading); 2015 Sep 26; 161(9):1830-1843. PubMed ID: 26296766 [Abstract] [Full Text] [Related]
15. Rewiring the Central Metabolic Pathway for High-Yield l-Serine Production in Corynebacterium glutamicum by Using Glucose. Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas MAG, Xu Z. Biotechnol J; 2019 Jun 26; 14(6):e1800497. PubMed ID: 30791233 [Abstract] [Full Text] [Related]
16. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Sasaki M, Teramoto H, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2011 Mar 26; 89(6):1905-16. PubMed ID: 21125267 [Abstract] [Full Text] [Related]
17. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Ikeda M. Appl Microbiol Biotechnol; 2012 Dec 26; 96(5):1191-200. PubMed ID: 23081775 [Abstract] [Full Text] [Related]
18. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Chen Z, Huang J, Wu Y, Wu W, Zhang Y, Liu D. Metab Eng; 2017 Jan 26; 39():151-158. PubMed ID: 27918882 [Abstract] [Full Text] [Related]
19. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metab Eng; 2016 Nov 26; 38():204-216. PubMed ID: 27553883 [Abstract] [Full Text] [Related]
20. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J. BMC Mol Biol; 2007 Nov 15; 8():104. PubMed ID: 18005413 [Abstract] [Full Text] [Related] Page: [Next] [New Search]