These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 21478323

  • 21. myo-Inositol transport by Salmonella enterica serovar Typhimurium.
    Kröger C, Stolz J, Fuchs TM.
    Microbiology (Reading); 2010 Jan; 156(Pt 1):128-138. PubMed ID: 19833776
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.
    Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M.
    Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449
    [Abstract] [Full Text] [Related]

  • 24. Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum.
    Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M.
    J Bacteriol; 2013 Sep; 195(18):4283-96. PubMed ID: 23873914
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis.
    Morabbi Heravi K, Altenbuchner J.
    J Bacteriol; 2018 Oct 01; 200(19):. PubMed ID: 30038046
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum.
    Brüsseler C, Radek A, Tenhaef N, Krumbach K, Noack S, Marienhagen J.
    Bioresour Technol; 2018 Feb 01; 249():953-961. PubMed ID: 29145122
    [Abstract] [Full Text] [Related]

  • 30. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering.
    Neuner A, Heinzle E.
    Biotechnol J; 2011 Mar 01; 6(3):318-29. PubMed ID: 21370474
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY.
    Microb Cell Fact; 2016 Oct 07; 15(1):174. PubMed ID: 27717386
    [Abstract] [Full Text] [Related]

  • 36. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
    Rittmann D, Lindner SN, Wendisch VF.
    Appl Environ Microbiol; 2008 Oct 07; 74(20):6216-22. PubMed ID: 18757581
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A.
    Microb Cell Fact; 2018 May 17; 17(1):76. PubMed ID: 29773073
    [Abstract] [Full Text] [Related]

  • 40. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2.
    Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M.
    Mol Microbiol; 2008 Jan 17; 67(2):305-22. PubMed ID: 18047570
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.