These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


608 related items for PubMed ID: 21480637

  • 1. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C.
    ACS Nano; 2011 May 24; 5(5):4046-55. PubMed ID: 21480637
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles.
    Min Q, Pang Y, Collins DJ, Kuklev NA, Gottselig K, Steuerman DW, Gordon R.
    Opt Express; 2011 Jan 17; 19(2):1648-55. PubMed ID: 21263704
    [Abstract] [Full Text] [Related]

  • 4. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C, Hutchison JA, Van Dorpe P, Kox R, De Vlaminck I, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G.
    Small; 2009 Dec 17; 5(24):2876-82. PubMed ID: 19816878
    [Abstract] [Full Text] [Related]

  • 5. Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates.
    Lin DZ, Chen YP, Jhuang PJ, Chu JY, Yeh JT, Wang JK.
    Opt Express; 2011 Feb 28; 19(5):4337-45. PubMed ID: 21369264
    [Abstract] [Full Text] [Related]

  • 6. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area.
    Li WD, Ding F, Hu J, Chou SY.
    Opt Express; 2011 Feb 28; 19(5):3925-36. PubMed ID: 21369218
    [Abstract] [Full Text] [Related]

  • 7. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.
    De Jesús MA, Giesfeldt KS, Oran JM, Abu-Hatab NA, Lavrik NV, Sepaniak MJ.
    Appl Spectrosc; 2005 Dec 28; 59(12):1501-8. PubMed ID: 16390590
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P.
    ACS Nano; 2008 Apr 28; 2(4):707-18. PubMed ID: 19206602
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars.
    Caldwell JD, Glembocki OJ, Bezares FJ, Kariniemi MI, Niinistö JT, Hatanpää TT, Rendell RW, Ukaegbu M, Ritala MK, Prokes SM, Hosten CM, Leskelä MA, Kasica R.
    Opt Express; 2011 Dec 19; 19(27):26056-64. PubMed ID: 22274194
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam JM.
    ACS Nano; 2011 Dec 27; 5(12):9799-806. PubMed ID: 22070659
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.