These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 2148342
21. Suppression of natural killer cell cytotoxicity by splenocytes from Corynebacterium parvum-injected, bone marrow-tolerant, and infant mice. Savary CA, Lotzová E. J Immunol; 1978 Jan; 120(1):239-43. PubMed ID: 342602 [Abstract] [Full Text] [Related]
22. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells. Kalland T, Belfrage H, Bhiladvala P, Hedlund G. J Immunol; 1987 Jun 01; 138(11):3640-5. PubMed ID: 3495566 [Abstract] [Full Text] [Related]
23. Inhibition of natural killer activity by calcitonin gene-related peptide. Umeda Y, Arisawa M. Immunopharmacol Immunotoxicol; 1989 Jun 01; 11(2-3):309-20. PubMed ID: 2559931 [Abstract] [Full Text] [Related]
24. Correlation between natural and antibody-dependent cell-mediated cytotoxicity against tumor targets in the mouse. II. Characterization of the effector cells. Santoni A, Herberman RB, Holden HT. J Natl Cancer Inst; 1979 Oct 01; 63(4):995-1003. PubMed ID: 384012 [Abstract] [Full Text] [Related]
25. Inhibition of NK cell generation by Corynebacterium parvum. Piccoli M, Santoni G, Santoni A, Frati L, Herberman RB, Chirigos MA. Immunopharmacol Immunotoxicol; 1991 Oct 01; 13(4):513-29. PubMed ID: 1723083 [Abstract] [Full Text] [Related]
26. Role of suppressor cells in the decline of natural killer cell activity in estrogen-treated mice. Milisauskas VK, Cudkowicz G, Nakamura I. Cancer Res; 1983 Nov 01; 43(11):5240-3. PubMed ID: 6225513 [Abstract] [Full Text] [Related]
27. Higher level expression of lymphocyte function-associated antigen-1 (LFA-1) on in vivo natural killer cells. Nishimura T, Itoh T. Eur J Immunol; 1988 Dec 01; 18(12):2077-80. PubMed ID: 3065089 [Abstract] [Full Text] [Related]
28. Characterization and utilization of a monoclonal antibody inhibiting porcine natural killer cell activity for isolation of natural killer and killer cells. Dato ME, Kim YB. J Immunol; 1990 Jun 01; 144(11):4452-62. PubMed ID: 1971298 [Abstract] [Full Text] [Related]
29. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells. Vujanovic NL, Herberman RB, Olszowy MW, Cramer DV, Salup RR, Reynolds CW, Hiserodt JC. Cancer Res; 1988 Feb 15; 48(4):884-90. PubMed ID: 3257412 [Abstract] [Full Text] [Related]
30. Expression of asialo GM1 by both Thy-1-positive and Thy-1-negative lymphocytes: evidence for modification of asialo GM1 by sialic acid. Harris MT, Schwarting GA, Stout RD. Thymus; 1981 Sep 15; 3(3):169-84. PubMed ID: 6171919 [Abstract] [Full Text] [Related]
31. Augmentation of natural killer cell activity in spleens of infant, aged, and low responder strain mice by Corynebacterium parvum. Gallagher MT, Nasrallah AG, Datta SK, Priest EL, Trentin JJ. Exp Hematol; 1981 Feb 15; 9(2):149-55. PubMed ID: 7238649 [Abstract] [Full Text] [Related]
32. In vitro and in vivo interaction between murine fibrosarcoma cells and natural killer cells. Laybourn KA, Hiserodt JC, Abruzzo LV, Varani J. Cancer Res; 1986 Jul 15; 46(7):3407-12. PubMed ID: 2939945 [Abstract] [Full Text] [Related]
33. Antibody-dependent cellular cytotoxicity mediated by murine lymphocytes activated in recombinant interleukin 2. Shiloni E, Eisenthal A, Sachs D, Rosenberg SA. J Immunol; 1987 Mar 15; 138(6):1992-8. PubMed ID: 3493293 [Abstract] [Full Text] [Related]
34. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). Dorshkind K, Pollack SB, Bosma MJ, Phillips RA. J Immunol; 1985 Jun 15; 134(6):3798-801. PubMed ID: 3989296 [Abstract] [Full Text] [Related]
35. A subpopulation of allospecific cytotoxic T-cell precursors with phenotypic characteristics of natural killer cells. Kaplan J, Wasserman K. Nat Immun Cell Growth Regul; 1985 Jun 15; 4(6):305-14. PubMed ID: 2418351 [Abstract] [Full Text] [Related]
36. Characterization of natural killer activity in sponge matrix allografts. Hoffman RA, Ascher NL, Jordan ML, Migliori RJ, Simmons RL. J Immunol; 1988 Mar 01; 140(5):1702-10. PubMed ID: 3257981 [Abstract] [Full Text] [Related]
37. Regulation of the secondary in vitro antibody response by endogenous natural killer cells: kinetics, isotype preference, and non-identity with T suppressor cells. Robles CP, Pollack SB. J Immunol; 1986 Oct 15; 137(8):2418-24. PubMed ID: 2944955 [Abstract] [Full Text] [Related]
38. Asialo-GM1+ natural killer cells directly suppress antibody-producing B cells. Robles CP, Pollack SB. Nat Immun Cell Growth Regul; 1989 Oct 15; 8(4):209-22. PubMed ID: 2797013 [Abstract] [Full Text] [Related]
39. Regulation of natural killer cell activation: implementation for the control of tumor metastasis. Hanna N. Nat Immun Cell Growth Regul; 1989 Oct 15; 3(1):22-33. PubMed ID: 6235447 [Abstract] [Full Text] [Related]
40. The suppressive effect of anti-asialo GM1 antibody on low-dose streptozotocin-induced diabetes in CD-1 mice. Maruyama T, Watanabe K, Yanagawa T, Kasatani T, Kasuga A, Shimada A, Takei I, Suzuki Y, Kataoka K, Saruta T. Diabetes Res; 1991 Apr 15; 16(4):171-5. PubMed ID: 1802483 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]