These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


530 related items for PubMed ID: 21484988

  • 1. Hydrophilized 3D porous scaffold for effective plasmid DNA delivery.
    Oh SH, Kim TH, Jang SH, Im GI, Lee JH.
    J Biomed Mater Res A; 2011 Jun 15; 97(4):441-50. PubMed ID: 21484988
    [Abstract] [Full Text] [Related]

  • 2. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes.
    Im GI, Kim HJ, Lee JH.
    Biomaterials; 2011 Jul 15; 32(19):4385-92. PubMed ID: 21421267
    [Abstract] [Full Text] [Related]

  • 3. Controlled and sustained gene delivery from injectable, porous PLGA scaffolds.
    Jeon O, Krebs M, Alsberg E.
    J Biomed Mater Res A; 2011 Jul 15; 98(1):72-9. PubMed ID: 21538827
    [Abstract] [Full Text] [Related]

  • 4. Photochemical internalization for pDNA transfection: evaluation of poly(d,l-lactide-co-glycolide) and poly(ethylenimine) nanoparticles.
    Gargouri M, Sapin A, Arıca-Yegin B, Merlin JL, Becuwe P, Maincent P.
    Int J Pharm; 2011 Jan 17; 403(1-2):276-84. PubMed ID: 21044878
    [Abstract] [Full Text] [Related]

  • 5. PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells.
    Moffatt S, Cristiano RJ.
    Int J Pharm; 2006 Jul 06; 317(1):10-3. PubMed ID: 16713147
    [Abstract] [Full Text] [Related]

  • 6. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H, Wang CH.
    J Control Release; 2007 Jul 16; 120(1-2):111-21. PubMed ID: 17512077
    [Abstract] [Full Text] [Related]

  • 7. Porous PLGA scaffolds for controlled release of naked and polyethyleneimine-complexed DNA.
    Ravi N, Gupta G, Milbrandt TA, Puleo DA.
    Biomed Mater; 2012 Oct 16; 7(5):055007. PubMed ID: 22909549
    [Abstract] [Full Text] [Related]

  • 8. Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle.
    Chang CW, Choi D, Kim WJ, Yockman JW, Christensen LV, Kim YH, Kim SW.
    J Control Release; 2007 Apr 02; 118(2):245-53. PubMed ID: 17270304
    [Abstract] [Full Text] [Related]

  • 9. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing.
    Zeng P, Xu Y, Zeng C, Ren H, Peng M.
    Int J Pharm; 2011 Aug 30; 415(1-2):259-66. PubMed ID: 21645597
    [Abstract] [Full Text] [Related]

  • 10. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis.
    Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JM, Park KH.
    Biomaterials; 2011 Jan 30; 32(1):268-78. PubMed ID: 20875683
    [Abstract] [Full Text] [Related]

  • 11. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells.
    Moffatt S, Cristiano RJ.
    Int J Pharm; 2006 Sep 14; 321(1-2):143-54. PubMed ID: 16860501
    [Abstract] [Full Text] [Related]

  • 12. Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds.
    Yang Y, Li X, Cheng L, He S, Zou J, Chen F, Zhang Z.
    Acta Biomater; 2011 Jun 14; 7(6):2533-43. PubMed ID: 21345386
    [Abstract] [Full Text] [Related]

  • 13. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery.
    Shen Y, Peng H, Pan S, Feng M, Wen Y, Deng J, Luo X, Wu C.
    Nanotechnology; 2010 Jan 29; 21(4):045102. PubMed ID: 20009166
    [Abstract] [Full Text] [Related]

  • 14. PEGylated PEI-based biodegradable polymers as non-viral gene vectors.
    Huang FW, Wang HY, Li C, Wang HF, Sun YX, Feng J, Zhang XZ, Zhuo RX.
    Acta Biomater; 2010 Nov 29; 6(11):4285-95. PubMed ID: 20601231
    [Abstract] [Full Text] [Related]

  • 15. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: tumor immunotoxicity in B16F10 melanoma.
    Velluto D, Thomas SN, Simeoni E, Swartz MA, Hubbell JA.
    Biomaterials; 2011 Dec 29; 32(36):9839-47. PubMed ID: 21924769
    [Abstract] [Full Text] [Related]

  • 16. Impregnation of plasmid DNA into three-dimensional PLGA scaffold enhances DNA expression of mesenchymal stem cells in vitro.
    Miao PH, He CX, Hu YL, Tabata Y, Gao JQ, Hu ZJ.
    Pharmazie; 2012 Mar 29; 67(3):229-32. PubMed ID: 22530304
    [Abstract] [Full Text] [Related]

  • 17. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells.
    Intra J, Salem AK.
    J Drug Target; 2011 Jul 29; 19(6):393-408. PubMed ID: 20681752
    [Abstract] [Full Text] [Related]

  • 18. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency.
    Tang J, Chen JY, Liu J, Luo M, Wang YJ, Wei XW, Gao X, Wang BL, Liu YB, Yi T, Tong AP, Song XR, Xie YM, Zhao Y, Xiang M, Huang Y, Zheng Y.
    Int J Pharm; 2012 Jul 15; 431(1-2):210-21. PubMed ID: 22561795
    [Abstract] [Full Text] [Related]

  • 19. Chondrogenesis using mesenchymal stem cells and PCL scaffolds.
    Kim HJ, Lee JH, Im GI.
    J Biomed Mater Res A; 2010 Feb 15; 92(2):659-66. PubMed ID: 19235210
    [Abstract] [Full Text] [Related]

  • 20. Fabrication and characterization of hydrophilized porous PLGA nerve guide conduits by a modified immersion precipitation method.
    Oh SH, Lee JH.
    J Biomed Mater Res A; 2007 Mar 01; 80(3):530-8. PubMed ID: 17013859
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.