These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 21497355
21. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies. Kimura M, Chan RW. Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255 [Abstract] [Full Text] [Related]
22. Spatially varying properties of the vocal ligament contribute to its eigenfrequency response. Kelleher JE, Zhang K, Siegmund T, Chan RW. J Mech Behav Biomed Mater; 2010 Nov; 3(8):600-9. PubMed ID: 20826366 [Abstract] [Full Text] [Related]
23. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range. Chan RW. J Acoust Soc Am; 2004 Jun; 115(6):3161-70. PubMed ID: 15237840 [Abstract] [Full Text] [Related]
24. Quantitative assessment of the anisotropy of vocal fold tissue using shear rheometry and traction testing. Miri AK, Mongrain R, Chen LX, Mongeau L. J Biomech; 2012 Nov 15; 45(16):2943-6. PubMed ID: 23021593 [Abstract] [Full Text] [Related]
31. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies. Kimura M, Mau T, Chan RW. Laryngoscope; 2010 Apr 15; 120(4):764-8. PubMed ID: 20213661 [Abstract] [Full Text] [Related]
32. Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa. Chan RW, Titze IR. Laryngoscope; 1999 Jul 15; 109(7 Pt 1):1142-9. PubMed ID: 10401858 [Abstract] [Full Text] [Related]
33. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Chan RW, Titze IR. Ann Biomed Eng; 2003 Apr 15; 31(4):482-91. PubMed ID: 12723689 [Abstract] [Full Text] [Related]
34. Cervids with different vocal behavior demonstrate different viscoelastic properties of their vocal folds. Riede T, Lingle S, Hunter EJ, Titze IR. J Morphol; 2010 Jan 15; 271(1):1-11. PubMed ID: 19603411 [Abstract] [Full Text] [Related]
35. Modal response of a computational vocal fold model with a substrate layer of adipose tissue. Jones CL, Achuthan A, Erath BD. J Acoust Soc Am; 2015 Feb 15; 137(2):EL158-64. PubMed ID: 25698044 [Abstract] [Full Text] [Related]
36. Analysis of high-pitched phonation using three-dimensional computed tomography. Hiramatsu H, Tokashiki R, Nakamura H, Motohashi R, Sakurai E, Nomoto M, Toyomura F, Suzuki M. J Voice; 2012 Sep 15; 26(5):548-54. PubMed ID: 22209054 [Abstract] [Full Text] [Related]
37. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation. Doellinger M, Berry DA. J Voice; 2006 Sep 15; 20(3):401-13. PubMed ID: 16300925 [Abstract] [Full Text] [Related]
38. Ovine Vocal Fold Tissue Fatigue Response to Accumulated, Large-Amplitude Vibration Exposure at Phonatory Frequencies. Chan RW. J Speech Lang Hear Res; 2019 Dec 18; 62(12):4291-4299. PubMed ID: 31770065 [Abstract] [Full Text] [Related]
39. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations. Miri AK, Barthelat F, Mongeau L. J Voice; 2012 Nov 18; 26(6):688-97. PubMed ID: 22483778 [Abstract] [Full Text] [Related]