These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 21497932

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods.
    Arroyo C, Cebrián G, Pagán R, Condón S.
    Int J Food Microbiol; 2011 Jan 05; 144(3):446-54. PubMed ID: 21111503
    [Abstract] [Full Text] [Related]

  • 3. Inactivation of Cronobacter sakazakii by manothermosonication in buffer and milk.
    Arroyo C, Cebrián G, Pagán R, Condón S.
    Int J Food Microbiol; 2011 Nov 15; 151(1):21-8. PubMed ID: 21872958
    [Abstract] [Full Text] [Related]

  • 4. Effect of high-pressure processing on strains of Enterobacter sakazakii.
    González S, Flick GJ, Arritt FM, Holliman D, Meadows B.
    J Food Prot; 2006 Apr 15; 69(4):935-7. PubMed ID: 16629043
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Thermobacteriological characterization of Enterobacter sakazakii.
    Arroyo C, Condón S, Pagán R.
    Int J Food Microbiol; 2009 Nov 30; 136(1):110-8. PubMed ID: 19811846
    [Abstract] [Full Text] [Related]

  • 10. Effect of trans-cinnamaldehyde on reducing resistance to environmental stresses in Cronobacter sakazakii.
    Amalaradjou MA, Venkitanarayanan K.
    Foodborne Pathog Dis; 2011 Mar 30; 8(3):403-9. PubMed ID: 21114424
    [Abstract] [Full Text] [Related]

  • 11. Prediction of a required log reduction with probability for Enterobacter sakazakii during high-pressure processing, using a survival/death interface model.
    Koseki S, Matsubara M, Yamamoto K.
    Appl Environ Microbiol; 2009 Apr 30; 75(7):1885-91. PubMed ID: 19201951
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing.
    Hayman MM, Anantheswaran RC, Knabel SJ.
    Int J Food Microbiol; 2007 Apr 10; 115(2):220-6. PubMed ID: 17173999
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The Effects of Temperature on the Growth and Heat Resistance of Cronobacter spp.
    Ueda S.
    Biocontrol Sci; 2017 Apr 10; 22(2):125-129. PubMed ID: 28659555
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry.
    Jang HI, Rhee MS.
    Int J Food Microbiol; 2009 Jul 31; 133(1-2):113-20. PubMed ID: 19500867
    [Abstract] [Full Text] [Related]

  • 20. Comparison of Chromogenic Selective Media for the Detection of Cronobacter spp. (Enterobacter sakazakii).
    Teramura H, Fukuda N, Okada Y, Ogihara H.
    Biocontrol Sci; 2018 Jul 31; 23(1):27-33. PubMed ID: 29576592
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.