These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 21502123

  • 1. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.
    Bobbert MF, Richard Casius LJ.
    Philos Trans R Soc Lond B Biol Sci; 2011 May 27; 366(1570):1516-29. PubMed ID: 21502123
    [Abstract] [Full Text] [Related]

  • 2. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks.
    Granata KP, Padua DA, Wilson SE.
    J Electromyogr Kinesiol; 2002 Apr 27; 12(2):127-35. PubMed ID: 11955985
    [Abstract] [Full Text] [Related]

  • 3. Energy efficient hopping with Hill-type muscle properties on segmented legs.
    Rosendo A, Iida F.
    Bioinspir Biomim; 2016 Apr 12; 11(3):036002. PubMed ID: 27070710
    [Abstract] [Full Text] [Related]

  • 4. Leg exoskeleton reduces the metabolic cost of human hopping.
    Grabowski AM, Herr HM.
    J Appl Physiol (1985); 2009 Sep 12; 107(3):670-8. PubMed ID: 19423835
    [Abstract] [Full Text] [Related]

  • 5. Musculoskeletal stiffness during hopping and running does not change following downhill backwards walking.
    Joseph CW, Bradshaw EJ, Kemp J, Clark RA.
    Sports Biomech; 2014 Sep 12; 13(3):241-58. PubMed ID: 25325769
    [Abstract] [Full Text] [Related]

  • 6. Leg stiffness and mechanical energetic processes during jumping on a sprung surface.
    Arampatzis A, Brüggemann GP, Klapsing GM.
    Med Sci Sports Exerc; 2001 Jun 12; 33(6):923-31. PubMed ID: 11404657
    [Abstract] [Full Text] [Related]

  • 7. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP, Grabowski AM.
    J Appl Physiol (1985); 2019 Aug 01; 127(2):520-530. PubMed ID: 31219770
    [Abstract] [Full Text] [Related]

  • 8. The dynamic limits of hop height: Biological actuator capabilities and mechanical requirements of task produce incongruity between one- and two-legged performance.
    Gutmann AK, Bertram JE.
    Proc Inst Mech Eng H; 2016 Mar 01; 230(3):191-200. PubMed ID: 26733472
    [Abstract] [Full Text] [Related]

  • 9. Leg stiffness adjustment during hopping at different intensities and frequencies.
    Mrdakovic V, Ilic D, Vulovic R, Matic M, Jankovic N, Filipovic N.
    Acta Bioeng Biomech; 2014 Mar 01; 16(3):69-76. PubMed ID: 25308379
    [Abstract] [Full Text] [Related]

  • 10. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT, Morgenroth DC.
    J Biomech; 1999 Mar 01; 32(3):267-73. PubMed ID: 10093026
    [Abstract] [Full Text] [Related]

  • 11. Bilateral deficit of spring-like behaviour during hopping in sprinters.
    Otsuka M, Kurihara T, Isaka T.
    Eur J Appl Physiol; 2018 Feb 01; 118(2):475-481. PubMed ID: 29260403
    [Abstract] [Full Text] [Related]

  • 12. Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping.
    van der Krogt MM, de Graaf WW, Farley CT, Moritz CT, Richard Casius LJ, Bobbert MF.
    J Appl Physiol (1985); 2009 Sep 01; 107(3):801-8. PubMed ID: 19589956
    [Abstract] [Full Text] [Related]

  • 13. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S, Seyfarth A.
    Bioinspir Biomim; 2012 Mar 01; 7(1):016006. PubMed ID: 22183256
    [Abstract] [Full Text] [Related]

  • 14. Leg stiffness of older and younger individuals over a range of hopping frequencies.
    Hobara H, Kobayashi Y, Yoshida E, Mochimaru M.
    J Electromyogr Kinesiol; 2015 Apr 01; 25(2):305-9. PubMed ID: 25716326
    [Abstract] [Full Text] [Related]

  • 15. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping.
    Riese S, Seyfarth A, Grimmer S.
    J Biomech; 2013 Sep 03; 46(13):2207-12. PubMed ID: 23880438
    [Abstract] [Full Text] [Related]

  • 16. A simple method for field measurements of leg stiffness in hopping.
    Dalleau G, Belli A, Viale F, Lacour JR, Bourdin M.
    Int J Sports Med; 2004 Apr 03; 25(3):170-6. PubMed ID: 15088239
    [Abstract] [Full Text] [Related]

  • 17. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.
    Farris DJ, Hicks JL, Delp SL, Sawicki GS.
    J Exp Biol; 2014 Nov 15; 217(Pt 22):4018-28. PubMed ID: 25278469
    [Abstract] [Full Text] [Related]

  • 18. Is energy expenditure taken into account in human sub-maximal jumping?--A simulation study.
    Vanrenterghem J, Bobbert MF, Casius LJ, De Clercq D.
    J Electromyogr Kinesiol; 2008 Feb 15; 18(1):108-15. PubMed ID: 17085059
    [Abstract] [Full Text] [Related]

  • 19. Interaction of leg stiffness and surfaces stiffness during human hopping.
    Ferris DP, Farley CT.
    J Appl Physiol (1985); 1997 Jan 15; 82(1):15-22; discussion 13-4. PubMed ID: 9029193
    [Abstract] [Full Text] [Related]

  • 20. The mechanics of jumping versus steady hopping in yellow-footed rock wallabies.
    McGowan CP, Baudinette RV, Usherwood JR, Biewener AA.
    J Exp Biol; 2005 Jul 15; 208(Pt 14):2741-51. PubMed ID: 16000543
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.