These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 2150308
1. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase. Baizabal-Aguirre VM, Behrens MI, Gómez-Puyou A, Tuena de Gómez-Puyou M. Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308 [Abstract] [Full Text] [Related]
2. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase. Galkin MA, Syroeshkin AV. Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566 [Abstract] [Full Text] [Related]
3. Localisation of adenine nucleotide-binding sites on beef-heart mitochondrial ATPase by photolabelling with 8-azido-ADP and 8-azido-ATP. Wagenvoord RJ, van der Kraan I, Kemp A. Biochim Biophys Acta; 1979 Oct 10; 548(1):85-95. PubMed ID: 158387 [Abstract] [Full Text] [Related]
4. [Effect of the membrane potential on the rate of ATP hydrolysis in submitochondrial particles]. Gladysheva TB, Kozlov IA, Khodzhaev EIu, Cherniak BV. Dokl Akad Nauk SSSR; 1984 Oct 10; 276(4):980-3. PubMed ID: 6236064 [No Abstract] [Full Text] [Related]
5. [Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during delta-mu-H+ generation on a membrane]. Vasil'eva EA, Panchenko MV, Vinogradov AD. Biokhimiia; 1989 Sep 10; 54(9):1490-8. PubMed ID: 2531616 [Abstract] [Full Text] [Related]
6. Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition. Penin F, Di Pietro A, Godinot C, Gautheron DC. Biochemistry; 1988 Dec 13; 27(25):8969-74. PubMed ID: 2906804 [Abstract] [Full Text] [Related]
7. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV, Galkin MA, Sedlov AV, Vinogradov AD. Biochemistry (Mosc); 1999 Oct 13; 64(10):1128-37. PubMed ID: 10561559 [Abstract] [Full Text] [Related]
8. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein. de Gómez-Puyou MT, Domínguez-Ramírez L, Pérez-Hernández G, Gómez-Puyou A. Arch Biochem Biophys; 2005 Jul 01; 439(1):129-37. PubMed ID: 15950171 [Abstract] [Full Text] [Related]
9. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-. García JJ, Tuena de Gómez-Puyou M, Gómez-Puyou A. J Bioenerg Biomembr; 1995 Feb 01; 27(1):127-36. PubMed ID: 7629044 [Abstract] [Full Text] [Related]
10. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV, Scaduto RC. Arch Biochem Biophys; 1995 Feb 01; 316(2):815-20. PubMed ID: 7864638 [Abstract] [Full Text] [Related]
11. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. Tomita M, Knox BE, Tsong TY. Biochim Biophys Acta; 1987 Oct 29; 894(1):16-28. PubMed ID: 2889470 [Abstract] [Full Text] [Related]
12. Effect of dimethylsulfoxide on ATP synthesis by mitochondrial soluble F1-ATPase. Sakamoto J. J Biochem; 1984 Aug 29; 96(2):483-7. PubMed ID: 6238952 [Abstract] [Full Text] [Related]
13. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes. Herweijer MA, Berden JA, Kemp A, Slater EC. Biochim Biophys Acta; 1985 Aug 28; 809(1):81-9. PubMed ID: 2862915 [Abstract] [Full Text] [Related]
14. ATP-driven transhydrogenase provides an example of delocalized chemiosmotic coupling in reconstituted vesicles and in submitochondrial particles. Persson B, Berden JA, Rydström J, van Dam K. Biochim Biophys Acta; 1987 Nov 19; 894(2):239-51. PubMed ID: 2960379 [Abstract] [Full Text] [Related]
15. [Kinetic evidence of the interaction of three nucleotide-binding centers of mitochondrial ATP-synthetase]. Bulygin VV, Vinogradov AD. Biokhimiia; 1989 Aug 19; 54(8):1359-67. PubMed ID: 2510833 [Abstract] [Full Text] [Related]
16. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA, Fitin AF, Minkov IB, Vinogradov AD. Biochem J; 1980 Jun 15; 188(3):807-15. PubMed ID: 6451217 [Abstract] [Full Text] [Related]
17. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase. Penefsky HS. J Biol Chem; 1985 Nov 05; 260(25):13735-41. PubMed ID: 2932442 [Abstract] [Full Text] [Related]
18. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD. Biochem J; 1982 Jan 15; 202(1):15-23. PubMed ID: 6211171 [Abstract] [Full Text] [Related]
19. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP. Martins OB, Tuena de Gómez-Puyou M, Gómez-Puyou A. Biochemistry; 1988 Sep 20; 27(19):7552-8. PubMed ID: 2974725 [Abstract] [Full Text] [Related]
20. [The effect of oxidazable substrates and ATP on the sensitivity of certain energy-dependent functions submitochondrial particles to phospholipases A, C and D]. Kupriianov VV, Luzikov VN. Biokhimiia; 1975 Sep 20; 40(4):869-74. PubMed ID: 1116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]