These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


948 related items for PubMed ID: 21504223

  • 21. Side chain flexibilities in the human ether-a-go-go related gene potassium channel (hERG) together with matched-pair binding studies suggest a new binding mode for channel blockers.
    Zachariae U, Giordanetto F, Leach AG.
    J Med Chem; 2009 Jul 23; 52(14):4266-76. PubMed ID: 19534531
    [Abstract] [Full Text] [Related]

  • 22. Exploring QSTR and toxicophore of hERG K+ channel blockers using GFA and HypoGen techniques.
    Garg D, Gandhi T, Gopi Mohan C.
    J Mol Graph Model; 2008 Feb 23; 26(6):966-76. PubMed ID: 17928249
    [Abstract] [Full Text] [Related]

  • 23. Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    Sinha N, Sen S.
    Eur J Med Chem; 2011 Feb 23; 46(2):618-30. PubMed ID: 21185626
    [Abstract] [Full Text] [Related]

  • 24. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques.
    Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NP, Olsen L, Jørgensen FS.
    Drug Metab Dispos; 2009 Mar 23; 37(3):658-64. PubMed ID: 19056915
    [Abstract] [Full Text] [Related]

  • 25. Towards in silico identification of the human ether-a-go-go-related gene channel blockers: discriminative vs. generative classification models.
    Kireeva N, Kuznetsov SL, Bykov AA, Tsivadze AY.
    SAR QSAR Environ Res; 2013 Mar 23; 24(2):103-17. PubMed ID: 23152964
    [Abstract] [Full Text] [Related]

  • 26. Determination of hERG channel blockers using a decision tree.
    Gepp MM, Hutter MC.
    Bioorg Med Chem; 2006 Aug 01; 14(15):5325-32. PubMed ID: 16616507
    [Abstract] [Full Text] [Related]

  • 27. ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.
    Wang S, Sun H, Liu H, Li D, Li Y, Hou T.
    Mol Pharm; 2016 Aug 01; 13(8):2855-66. PubMed ID: 27379394
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers.
    Schyman P, Liu R, Wallqvist A.
    J Chem Inf Model; 2016 Jan 25; 56(1):213-22. PubMed ID: 26718126
    [Abstract] [Full Text] [Related]

  • 36. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).
    Li X, Zhang Y, Li H, Zhao Y.
    Mol Inform; 2017 Dec 25; 36(12):. PubMed ID: 28857516
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Interaction simulation of hERG K+ channel with its specific BeKm-1 peptide: insights into the selectivity of molecular recognition.
    Yi H, Cao Z, Yin S, Dai C, Wu Y, Li W.
    J Proteome Res; 2007 Feb 25; 6(2):611-20. PubMed ID: 17269718
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
    Ermondi G, Visentin S, Caron G.
    Eur J Med Chem; 2009 May 25; 44(5):1926-32. PubMed ID: 19110341
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 48.