These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
486 related items for PubMed ID: 21506265
1. Probing the collapse dynamics of poly(N-isopropylacrylamide) brushes by AFM: effects of co-nonsolvency and grafting densities. Sui X, Chen Q, Hempenius MA, Vancso GJ. Small; 2011 May 23; 7(10):1440-7. PubMed ID: 21506265 [Abstract] [Full Text] [Related]
3. Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. Estillore NC, Advincula RC. Langmuir; 2011 May 17; 27(10):5997-6008. PubMed ID: 21513321 [Abstract] [Full Text] [Related]
4. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock RE, Kizhakkedathu JN. Biomacromolecules; 2011 Oct 10; 12(10):3715-27. PubMed ID: 21902171 [Abstract] [Full Text] [Related]
5. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures. Edmondson S, Nguyen NT, Lewis AL, Armes SP. Langmuir; 2010 May 18; 26(10):7216-26. PubMed ID: 20380474 [Abstract] [Full Text] [Related]
6. Loading and distribution of a model small molecule drug in poly(N-isopropylacrylamide) brushes: a neutron reflectometry and AFM study. Elliott LC, Jing B, Akgun B, Zhu Y, Bohn PW, Fullerton-Shirey SK. Langmuir; 2013 Mar 12; 29(10):3259-68. PubMed ID: 23441753 [Abstract] [Full Text] [Related]
7. Poly(N-isopropyl acrylamide) brush topography: dependence on grafting conditions and temperature. Choi BC, Choi S, Leckband DE. Langmuir; 2013 May 14; 29(19):5841-50. PubMed ID: 23600842 [Abstract] [Full Text] [Related]
8. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes. Zhang Z, Morse AJ, Armes SP, Lewis AL, Geoghegan M, Leggett GJ. Langmuir; 2011 Mar 15; 27(6):2514-21. PubMed ID: 21319847 [Abstract] [Full Text] [Related]
10. Chain Length and Grafting Density Dependent Enhancement in the Hydrolysis of Ester-Linked Polymer Brushes. Melzak KA, Yu K, Bo D, Kizhakkedathu JN, Toca-Herrera JL. Langmuir; 2015 Jun 16; 31(23):6463-70. PubMed ID: 26010390 [Abstract] [Full Text] [Related]
11. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Pan G, Zhang Y, Guo X, Li C, Zhang H. Biosens Bioelectron; 2010 Nov 15; 26(3):976-82. PubMed ID: 20837394 [Abstract] [Full Text] [Related]
12. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach. Jalili K, Abbasi F, Behboodpour L. J Mech Behav Biomed Mater; 2019 May 15; 93():118-129. PubMed ID: 30785077 [Abstract] [Full Text] [Related]
13. To patterned binary polymer brushes via capillary force lithography and surface-initiated polymerization. Liu Y, Klep V, Luzinov I. J Am Chem Soc; 2006 Jun 28; 128(25):8106-7. PubMed ID: 16787053 [Abstract] [Full Text] [Related]