These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


425 related items for PubMed ID: 21507902

  • 1. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism.
    Zhang H, Hao Q.
    FASEB J; 2011 Aug; 25(8):2574-82. PubMed ID: 21507902
    [Abstract] [Full Text] [Related]

  • 2. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition.
    King DT, Worrall LJ, Gruninger R, Strynadka NC.
    J Am Chem Soc; 2012 Jul 18; 134(28):11362-5. PubMed ID: 22713171
    [Abstract] [Full Text] [Related]

  • 3. Characterization of purified New Delhi metallo-β-lactamase-1.
    Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, Fast W.
    Biochemistry; 2011 Nov 22; 50(46):10102-13. PubMed ID: 22029287
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of Serratia fonticola Sfh-I: activation of the nucleophile in mono-zinc metallo-β-lactamases.
    Fonseca F, Bromley EH, Saavedra MJ, Correia A, Spencer J.
    J Mol Biol; 2011 Sep 02; 411(5):951-9. PubMed ID: 21762699
    [Abstract] [Full Text] [Related]

  • 5. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics.
    Chan PH, Chan KC, Liu HB, Chung WH, Leung YC, Wong KY.
    Anal Chem; 2005 Aug 15; 77(16):5268-76. PubMed ID: 16097768
    [Abstract] [Full Text] [Related]

  • 6. Cyclic Boronates Inhibit All Classes of β-Lactamases.
    Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J.
    Antimicrob Agents Chemother; 2017 Apr 15; 61(4):. PubMed ID: 28115348
    [Abstract] [Full Text] [Related]

  • 7. Structure-based computational study of the hydrolysis of New Delhi metallo-β-lactmase-1.
    Zhu K, Lu J, Ye F, Jin L, Kong X, Liang Z, Chen Y, Yu K, Jiang H, Li JQ, Luo C.
    Biochem Biophys Res Commun; 2013 Feb 01; 431(1):2-7. PubMed ID: 23313491
    [Abstract] [Full Text] [Related]

  • 8. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases.
    Borra PS, Leiros HK, Ahmad R, Spencer J, Leiros I, Walsh TR, Sundsfjord A, Samuelsen O.
    J Mol Biol; 2011 Aug 05; 411(1):174-89. PubMed ID: 21645522
    [Abstract] [Full Text] [Related]

  • 9. Outsmarting metallo-beta-lactamases by mimicking their natural evolution.
    Oelschlaeger P.
    J Inorg Biochem; 2008 Dec 05; 102(12):2043-51. PubMed ID: 18602162
    [Abstract] [Full Text] [Related]

  • 10. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism.
    Zheng M, Xu D.
    J Phys Chem B; 2013 Oct 03; 117(39):11596-607. PubMed ID: 24025144
    [Abstract] [Full Text] [Related]

  • 11. Extended-spectrum cephalosporinases: structure, detection and epidemiology.
    Nordmann P, Mammeri H.
    Future Microbiol; 2007 Jun 03; 2(3):297-307. PubMed ID: 17661704
    [Abstract] [Full Text] [Related]

  • 12. Binding of β-lactam antibiotics to a bioinspired dizinc complex reminiscent of the active site of metallo-β-lactamases.
    Wöckel S, Galezowska J, Dechert S, Meyer F.
    Inorg Chem; 2012 Feb 20; 51(4):2486-93. PubMed ID: 22296309
    [Abstract] [Full Text] [Related]

  • 13. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins.
    Feng H, Ding J, Zhu D, Liu X, Xu X, Zhang Y, Zang S, Wang DC, Liu W.
    J Am Chem Soc; 2014 Oct 22; 136(42):14694-7. PubMed ID: 25268575
    [Abstract] [Full Text] [Related]

  • 14. Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers.
    Brem J, van Berkel SS, Zollman D, Lee SY, Gileadi O, McHugh PJ, Walsh TR, McDonough MA, Schofield CJ.
    Antimicrob Agents Chemother; 2016 Jan 22; 60(1):142-50. PubMed ID: 26482303
    [Abstract] [Full Text] [Related]

  • 15. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
    LaCuran AE, Pegg KM, Liu EM, Bethel CR, Ai N, Welsh WJ, Bonomo RA, Oelschlaeger P.
    Antimicrob Agents Chemother; 2015 Dec 22; 59(12):7299-307. PubMed ID: 26369960
    [Abstract] [Full Text] [Related]

  • 16. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
    Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O.
    Biochemistry; 1998 Mar 10; 37(10):3286-96. PubMed ID: 9521648
    [Abstract] [Full Text] [Related]

  • 17. Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1.
    Skagseth S, Carlsen TJ, Bjerga GE, Spencer J, Samuelsen Ø, Leiros HK.
    Antimicrob Agents Chemother; 2016 Feb 10; 60(2):990-1002. PubMed ID: 26643332
    [Abstract] [Full Text] [Related]

  • 18. The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis.
    Feng H, Liu X, Wang S, Fleming J, Wang DC, Liu W.
    Nat Commun; 2017 Dec 21; 8(1):2242. PubMed ID: 29269938
    [Abstract] [Full Text] [Related]

  • 19. The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.
    Palacios AR, Mojica MF, Giannini E, Taracila MA, Bethel CR, Alzari PM, Otero LH, Klinke S, Llarrull LI, Bonomo RA, Vila AJ.
    Antimicrob Agents Chemother; 2019 Jan 21; 63(1):. PubMed ID: 30348667
    [Abstract] [Full Text] [Related]

  • 20. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X, Minasov G, Shoichet BK.
    Proteins; 2002 Apr 01; 47(1):86-96. PubMed ID: 11870868
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.