These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 21513942

  • 1. Innovative synthesis of citrate-coated superparamagnetic Fe3O4 nanoparticles and its preliminary applications.
    Srivastava S, Awasthi R, Gajbhiye NS, Agarwal V, Singh A, Yadav A, Gupta RK.
    J Colloid Interface Sci; 2011 Jul 01; 359(1):104-11. PubMed ID: 21513942
    [Abstract] [Full Text] [Related]

  • 2. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.
    Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K.
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():536-9. PubMed ID: 25123943
    [Abstract] [Full Text] [Related]

  • 3. One-pot solvothermal synthesis of FePt/Fe3O4 core-shell nanoparticles.
    Lai CW, Wang YH, Uttam BP, Chen YC, Hsiao JK, Liu CL, Liu HM, Chen CY, Chou PT.
    Chem Commun (Camb); 2008 Nov 14; (42):5342-4. PubMed ID: 18985204
    [Abstract] [Full Text] [Related]

  • 4. Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents.
    Basti H, Ben Tahar L, Smiri LS, Herbst F, Vaulay MJ, Chau F, Ammar S, Benderbous S.
    J Colloid Interface Sci; 2010 Jan 15; 341(2):248-54. PubMed ID: 19853857
    [Abstract] [Full Text] [Related]

  • 5. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao HJ.
    Nanoscale; 2011 Feb 15; 3(2):701-5. PubMed ID: 21103488
    [Abstract] [Full Text] [Related]

  • 6. A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome c.
    Mukhopadhyay A, Joshi N, Chattopadhyay K, De G.
    ACS Appl Mater Interfaces; 2012 Jan 15; 4(1):142-9. PubMed ID: 22111689
    [Abstract] [Full Text] [Related]

  • 7. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles.
    Faucher L, Gossuin Y, Hocq A, Fortin MA.
    Nanotechnology; 2011 Jul 22; 22(29):295103. PubMed ID: 21693804
    [Abstract] [Full Text] [Related]

  • 8. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles.
    Marchegiani G, Imperatori P, Mari A, Pilloni L, Chiolerio A, Allia P, Tiberto P, Suber L.
    Ultrason Sonochem; 2012 Jul 22; 19(4):877-82. PubMed ID: 22236507
    [Abstract] [Full Text] [Related]

  • 9. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging.
    Hu F, Jia Q, Li Y, Gao M.
    Nanotechnology; 2011 Jun 17; 22(24):245604. PubMed ID: 21508500
    [Abstract] [Full Text] [Related]

  • 10. Magnetic-nanoparticle-doped carbogenic nanocomposite: an effective magnetic resonance/fluorescence multimodal imaging probe.
    Srivastava S, Awasthi R, Tripathi D, Rai MK, Agarwal V, Agrawal V, Gajbhiye NS, Gupta RK.
    Small; 2012 Apr 10; 8(7):1099-109. PubMed ID: 22328128
    [Abstract] [Full Text] [Related]

  • 11. Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids.
    Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z.
    J Colloid Interface Sci; 2010 Jul 01; 347(1):1-7. PubMed ID: 20413125
    [Abstract] [Full Text] [Related]

  • 12. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents.
    Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T.
    J Am Chem Soc; 2011 Aug 17; 133(32):12624-31. PubMed ID: 21744804
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection.
    Yiu HH, McBain SC, Lethbridge ZA, Lees MR, Dobson J.
    J Biomed Mater Res A; 2010 Jan 17; 92(1):386-92. PubMed ID: 19191315
    [Abstract] [Full Text] [Related]

  • 15. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.
    Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D, Li F, Hu H, Yang S.
    Biomaterials; 2011 Jul 17; 32(20):4584-93. PubMed ID: 21458063
    [Abstract] [Full Text] [Related]

  • 16. Facile synthesis and characterization of polyethylenimine-coated Fe₃O₄ superparamagnetic nanoparticles for cancer cell separation.
    Lu W, Ling M, Jia M, Huang P, Li C, Yan B.
    Mol Med Rep; 2014 Mar 17; 9(3):1080-4. PubMed ID: 24452821
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors.
    Ding L, Hu Y, Luo Y, Zhu J, Wu Y, Yu Z, Cao X, Peng C, Shi X, Guo R.
    Biomater Sci; 2016 Mar 17; 4(3):474-82. PubMed ID: 26730414
    [Abstract] [Full Text] [Related]

  • 19. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications.
    Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X.
    ACS Appl Mater Interfaces; 2013 Mar 13; 5(5):1722-31. PubMed ID: 23388099
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.