These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
362 related items for PubMed ID: 21515348
1. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring. Abdel-Hamid S, Alshihabi F, Betz G. Int J Pharm; 2011 Jul 15; 413(1-2):29-35. PubMed ID: 21515348 [Abstract] [Full Text] [Related]
2. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting. Abdel-Hamid S, Betz G. Int J Pharm; 2011 Jun 15; 411(1-2):152-61. PubMed ID: 21497644 [Abstract] [Full Text] [Related]
3. Investigating the effect of punch geometry on high speed tableting through radial die-wall pressure monitoring. Abdel-Hamid S, Betz G. Pharm Dev Technol; 2013 Feb 15; 18(1):46-54. PubMed ID: 21810067 [Abstract] [Full Text] [Related]
4. A novel tool for the prediction of tablet sticking during high speed compaction. Abdel-Hamid S, Betz G. Pharm Dev Technol; 2012 Feb 15; 17(6):747-54. PubMed ID: 21563986 [Abstract] [Full Text] [Related]
5. Study of radial die-wall pressure during high speed tableting: effect of formulation variables. Abdel-Hamid S, Koziolek M, Betz G. Drug Dev Ind Pharm; 2012 May 15; 38(5):623-34. PubMed ID: 21988183 [Abstract] [Full Text] [Related]
6. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. Gupta A, Peck GE, Miller RW, Morris KR. J Pharm Sci; 2005 Oct 15; 94(10):2314-26. PubMed ID: 16136545 [Abstract] [Full Text] [Related]
7. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate. Hauschild K, Picker-Freyer KM. Pharm Dev Technol; 2006 Feb 15; 11(1):125-40. PubMed ID: 16544916 [Abstract] [Full Text] [Related]
8. Effect of friction between powder and tooling on the die-wall pressure evolution during tableting: Experimental and numerical results for flat and concave punches. Mazel V, Diarra H, Tchoreloff P. Int J Pharm; 2019 Jan 10; 554():116-124. PubMed ID: 30395955 [Abstract] [Full Text] [Related]
9. Understanding the Factors That Control the Quality of Mini-Tablet Compression: Flow, Particle Size, and Tooling Dimension. Zhao J, Yin D, Rowe J, Badawy S, Nikfar F, Pandey P. J Pharm Sci; 2018 Apr 10; 107(4):1204-1208. PubMed ID: 29233726 [Abstract] [Full Text] [Related]
10. Influence of the Punch Speed on the Die Wall/Powder Kinematic Friction During Tableting. Desbois L, Tchoreloff P, Mazel V. J Pharm Sci; 2019 Oct 10; 108(10):3359-3365. PubMed ID: 31095957 [Abstract] [Full Text] [Related]
11. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose. Celik M, Ong JT, Chowhan ZT, Samuel GJ. Pharm Dev Technol; 1996 Jul 10; 1(2):119-26. PubMed ID: 9552338 [Abstract] [Full Text] [Related]
12. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation. Mosig J, Kleinebudde P. J Pharm Sci; 2015 Mar 10; 104(3):1108-18. PubMed ID: 25558976 [Abstract] [Full Text] [Related]
13. On the die compaction of powders used in pharmaceutics. Aryanpour G, Farzaneh M. Pharm Dev Technol; 2018 Jul 10; 23(6):628-635. PubMed ID: 28631521 [Abstract] [Full Text] [Related]
14. Roll compaction/dry granulation: Suitability of different binders. Mangal H, Kirsolak M, Kleinebudde P. Int J Pharm; 2016 Apr 30; 503(1-2):213-9. PubMed ID: 26976499 [Abstract] [Full Text] [Related]
15. Prediction of Air Entrapment in Tableting: An Approximate Solution. Zavaliangos A, Katz JM, Daurio D, Johnson M, Pirjanian A, Alvarez-Nunez F. J Pharm Sci; 2017 Dec 30; 106(12):3604-3612. PubMed ID: 28919383 [Abstract] [Full Text] [Related]
16. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle. Katz JM, Roopwani R, Buckner IS. J Pharm Sci; 2013 Oct 30; 102(10):3687-93. PubMed ID: 23897398 [Abstract] [Full Text] [Related]
17. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders. Yu S, Gururajan B, Reynolds G, Roberts R, Adams MJ, Wu CY. Int J Pharm; 2012 May 30; 428(1-2):39-47. PubMed ID: 22402475 [Abstract] [Full Text] [Related]
18. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation. Osei-Yeboah F, Feng Y, Sun CC. J Pharm Sci; 2014 Jan 30; 103(1):207-15. PubMed ID: 24218097 [Abstract] [Full Text] [Related]
19. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate. Nordström J, Alderborn G. J Pharm Sci; 2015 Jun 30; 104(6):2029-2039. PubMed ID: 25872760 [Abstract] [Full Text] [Related]
20. A study on the coherence of compacted binary composites of microcrystalline cellulose and paracetamol. Mohammed H, Briscoe BJ, Pitt KG. Eur J Pharm Biopharm; 2006 May 30; 63(1):19-25. PubMed ID: 16326083 [Abstract] [Full Text] [Related] Page: [Next] [New Search]