These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 21516051
1. Validation of optical low coherence reflectometry retinal and choroidal biometry. Read SA, Collins MJ, Alonso-Caneiro D. Optom Vis Sci; 2011 Jul; 88(7):855-63. PubMed ID: 21516051 [Abstract] [Full Text] [Related]
2. Retinal and choroidal thickness in myopic anisometropia. Vincent SJ, Collins MJ, Read SA, Carney LG. Invest Ophthalmol Vis Sci; 2013 Apr 03; 54(4):2445-56. PubMed ID: 23482471 [Abstract] [Full Text] [Related]
3. Comparison of central corneal thickness using optical low-coherence reflectometry and spectral-domain optical coherence tomography. López-Miguel A, Correa-Pérez ME, Miranda-Anta S, Iglesias-Cortiñas D, Coco-Martín MB, Maldonado MJ. J Cataract Refract Surg; 2012 May 03; 38(5):758-64. PubMed ID: 22436868 [Abstract] [Full Text] [Related]
4. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJ, North RV, Drexler W. Invest Ophthalmol Vis Sci; 2010 Oct 03; 51(10):5260-6. PubMed ID: 20445110 [Abstract] [Full Text] [Related]
5. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera. Gonul S, Koktekir BE, Bakbak B, Gedik S. Arq Bras Oftalmol; 2014 Oct 03; 77(6):345-50. PubMed ID: 25627178 [Abstract] [Full Text] [Related]
6. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, Iida T. Invest Ophthalmol Vis Sci; 2011 Jul 25; 52(8):5536-40. PubMed ID: 21508114 [Abstract] [Full Text] [Related]
7. [Comparision of two new optical biometry devices with an ultrasonic immersion biometer]. Chiseliţă D, Cantemir A, Gălăţanu C, Irod A. Oftalmologia; 2011 Jul 25; 55(4):104-10. PubMed ID: 22642145 [Abstract] [Full Text] [Related]
10. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography. Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Invest Ophthalmol Vis Sci; 2013 Nov 15; 54(12):7578-86. PubMed ID: 24176903 [Abstract] [Full Text] [Related]
11. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. Hoffer KJ, Hoffmann PC, Savini G. J Cataract Refract Surg; 2016 Aug 15; 42(8):1165-72. PubMed ID: 27531293 [Abstract] [Full Text] [Related]
16. A novel technique of adjusting segmentation boundary layers to achieve comparability of retinal thickness and volumes between spectral domain and time domain optical coherence tomography. Tan CS, Li KZ, Lim TH. Invest Ophthalmol Vis Sci; 2012 Aug 13; 53(9):5515-9. PubMed ID: 22786905 [Abstract] [Full Text] [Related]
19. Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Matsuo Y, Sakamoto T, Yamashita T, Tomita M, Shirasawa M, Terasaki H. Invest Ophthalmol Vis Sci; 2013 Nov 19; 54(12):7630-6. PubMed ID: 24168999 [Abstract] [Full Text] [Related]