These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 21517625
1. Force imbalance in lattice Boltzmann equation for two-phase flows. Guo Z, Zheng C, Shi B. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036707. PubMed ID: 21517625 [Abstract] [Full Text] [Related]
2. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. Lou Q, Guo Z, Shi B. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063301. PubMed ID: 23848800 [Abstract] [Full Text] [Related]
3. Theoretical and numerical study of axisymmetric lattice Boltzmann models. Huang H, Lu XY. Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832 [Abstract] [Full Text] [Related]
4. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H, Valocchi AJ, Zhang Y, Kang Q. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [Abstract] [Full Text] [Related]
5. Interface-capturing lattice Boltzmann equation model for two-phase flows. Lou Q, Guo Z. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013302. PubMed ID: 25679734 [Abstract] [Full Text] [Related]
6. Theoretical and numerical study on the well-balanced regularized lattice Boltzmann model for two-phase flow. Zhang Q, Jiang M, Zhuo C, Zhong C, Liu S. Phys Rev E; 2023 Nov; 108(5-2):055309. PubMed ID: 38115487 [Abstract] [Full Text] [Related]
8. Lattice Boltzmann model for a steady radiative transfer equation. Yi HL, Yao FJ, Tan HP. Phys Rev E; 2016 Aug; 94(2-1):023312. PubMed ID: 27627417 [Abstract] [Full Text] [Related]
9. Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability. Lallemand P, Luo LS. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6546-62. PubMed ID: 11088335 [Abstract] [Full Text] [Related]
10. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Li Q, Luo KH, Gao YJ, He YL. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026704. PubMed ID: 22463354 [Abstract] [Full Text] [Related]
11. Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows. Guo Z, Han H, Shi B, Zheng C. Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046708. PubMed ID: 19518381 [Abstract] [Full Text] [Related]
12. Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows. Zheng L, Guo Z, Shi B. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568 [Abstract] [Full Text] [Related]
13. Lattice Boltzmann model for axisymmetric multiphase flows. Premnath KN, Abraham J. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056706. PubMed ID: 16089690 [Abstract] [Full Text] [Related]
14. Lattice Boltzmann equation linear stability analysis: thermal and athermal models. Siebert DN, Hegele LA, Philippi PC. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026707. PubMed ID: 18352148 [Abstract] [Full Text] [Related]
15. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field. Huang R, Wu H. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033302. PubMed ID: 25871241 [Abstract] [Full Text] [Related]
16. Pseudopotential lattice Boltzmann equation method for two-phase flow: A higher-order Chapmann-Enskog expansion. Zhai Q, Zheng L, Zheng S. Phys Rev E; 2017 Feb; 95(2-1):023313. PubMed ID: 28297988 [Abstract] [Full Text] [Related]
17. Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions. Yong WA, Luo LS. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):065701. PubMed ID: 23367997 [Abstract] [Full Text] [Related]
18. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Li Q, Luo KH. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895 [Abstract] [Full Text] [Related]
20. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Shao JY, Shu C, Huang HB, Chew YT. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033309. PubMed ID: 24730969 [Abstract] [Full Text] [Related] Page: [Next] [New Search]