These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Song K, Li L, Tedesco LP, Li S, Clercin NA, Hall BE, Li Z, Shi K. Sci Total Environ; 2012 Jun 01; 426():220-32. PubMed ID: 22521166 [Abstract] [Full Text] [Related]
5. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S, Song K, Wang S, Liu G, Wen Z, Shang Y, Lyu L, Chen F, Xu S, Tao H, Du Y, Fang C, Mu G. Sci Total Environ; 2021 Jul 15; 778():146271. PubMed ID: 33721636 [Abstract] [Full Text] [Related]
6. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms? Deutsch ES, Alameddine I, El-Fadel M. Environ Monit Assess; 2018 Feb 15; 190(3):141. PubMed ID: 29450661 [Abstract] [Full Text] [Related]
7. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Chen J, Quan W. Environ Monit Assess; 2013 Mar 15; 185(3):2243-55. PubMed ID: 22707149 [Abstract] [Full Text] [Related]
8. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Park Y, Cho KH, Park J, Cha SM, Kim JH. Sci Total Environ; 2015 Jan 01; 502():31-41. PubMed ID: 25241206 [Abstract] [Full Text] [Related]
12. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring in Finnish lakes. Koponen S, Pulliainen J, Servomaa H, Zhang Y, Hallikainen M, Kallio K, Vepsäläinen J, Pyhälahti T, Hannonen T. Sci Total Environ; 2001 Mar 14; 268(1-3):95-106. PubMed ID: 11315749 [Abstract] [Full Text] [Related]
13. [Comparison of chlorophyll a concentration estimation in Taihu Lake using different methods]. Li YL, Zhang YL, Li JS, Liu ML. Huan Jing Ke Xue; 2009 Mar 15; 30(3):680-6. PubMed ID: 19432312 [Abstract] [Full Text] [Related]
17. Inversion and distribution of total suspended matter in water based on remote sensing images-A case study on Yuqiao Reservoir, China. Cao H, Han L, Li W, Liu Z, Li L. Water Environ Res; 2021 Apr 15; 93(4):582-595. PubMed ID: 32954623 [Abstract] [Full Text] [Related]
18. Total suspended matter observation in the Pearl River estuary from in situ and MERIS data. Xi H, Zhang Y. Environ Monit Assess; 2011 Jun 15; 177(1-4):563-74. PubMed ID: 20809388 [Abstract] [Full Text] [Related]
19. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Dekker AG, Vos RJ, Peters SW. Sci Total Environ; 2001 Mar 14; 268(1-3):197-214. PubMed ID: 11315742 [Abstract] [Full Text] [Related]
20. Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam. Nguyen HQ, Ha NT, Nguyen-Ngoc L, Pham TL. Water Environ Res; 2021 Dec 14; 93(12):2941-2957. PubMed ID: 34547152 [Abstract] [Full Text] [Related] Page: [Next] [New Search]