These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


343 related items for PubMed ID: 21528851

  • 1. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering.
    Ip S, MacLaughlin CM, Gunari N, Walker GC.
    Langmuir; 2011 Jun 07; 27(11):7024-33. PubMed ID: 21528851
    [Abstract] [Full Text] [Related]

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 3. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M, Haes AJ.
    J Am Chem Soc; 2008 Oct 29; 130(43):14273-9. PubMed ID: 18831552
    [Abstract] [Full Text] [Related]

  • 4. Facile synthesis of Raman active phospholipid gold nanoparticles.
    Tam NC, Scott BM, Voicu D, Wilson BC, Zheng G.
    Bioconjug Chem; 2010 Dec 15; 21(12):2178-82. PubMed ID: 21090645
    [Abstract] [Full Text] [Related]

  • 5. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering.
    Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V.
    Langmuir; 2012 Sep 18; 28(37):13166-71. PubMed ID: 22958086
    [Abstract] [Full Text] [Related]

  • 6. Study of Langmuir-Blodgett phospholipidic films deposited on surface enhanced Raman scattering active gold nanoparticle monolayers.
    Bernard S, Felidj N, Truong S, Peretti P, Lévi G, Aubard J.
    Biopolymers; 2002 Sep 18; 67(4-5):314-8. PubMed ID: 12012456
    [Abstract] [Full Text] [Related]

  • 7. SERRS for single-molecule detection of dye-labeled phospholipids in Langmuir-Blodgett monolayers.
    Pieczonka NP, Moula G, Aroca RF.
    Langmuir; 2009 Oct 06; 25(19):11261-4. PubMed ID: 19715331
    [Abstract] [Full Text] [Related]

  • 8. One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis.
    Lee KY, Hwang J, Lee YW, Kim J, Han SW.
    J Colloid Interface Sci; 2007 Dec 15; 316(2):476-81. PubMed ID: 17727872
    [Abstract] [Full Text] [Related]

  • 9. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK, Huang GG, Kaneko T, Ozaki Y.
    Phys Chem Chem Phys; 2009 Sep 14; 11(34):7484-90. PubMed ID: 19690723
    [Abstract] [Full Text] [Related]

  • 10. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M, Brolo AG.
    Chemphyschem; 2008 Sep 15; 9(13):1899-907. PubMed ID: 18704901
    [Abstract] [Full Text] [Related]

  • 11. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y, Ueno K, Misawa H.
    Chem Commun (Camb); 2011 Mar 28; 47(12):3505-7. PubMed ID: 21318204
    [Abstract] [Full Text] [Related]

  • 12. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY, Huang CC, Jhang JS, Liu AC, Chiang CC, Hsieh ML, Huang PJ, Tuyen le D, Minh le Q, Yang TS, Chau LK, Kan HC, Hsu CC.
    Opt Express; 2009 Nov 23; 17(24):21522-9. PubMed ID: 19997393
    [Abstract] [Full Text] [Related]

  • 13. Preparation of silica-encapsulated hollow gold nanosphere tags using layer-by-layer method for multiplex surface-enhanced raman scattering detection.
    Huang J, Kim KH, Choi N, Chon H, Lee S, Choo J.
    Langmuir; 2011 Aug 16; 27(16):10228-33. PubMed ID: 21702512
    [Abstract] [Full Text] [Related]

  • 14. Gold nanoparticles generated in ethosome bilayers, as revealed by cryo-electron-tomography.
    de la Presa P, Rueda T, del Puerto Morales M, Javier Chichón F, Arranz R, Valpuesta JM, Hernando A.
    J Phys Chem B; 2009 Mar 12; 113(10):3051-7. PubMed ID: 19708264
    [Abstract] [Full Text] [Related]

  • 15. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP.
    J Am Chem Soc; 2010 Aug 11; 132(31):10903-10. PubMed ID: 20681724
    [Abstract] [Full Text] [Related]

  • 16. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects.
    Wang MH, Hu JW, Li YJ, Yeung ES.
    Nanotechnology; 2010 Apr 09; 21(14):145608. PubMed ID: 20234084
    [Abstract] [Full Text] [Related]

  • 17. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM, Mullaithilaga N, Yang G, Ip SY, Wang C, Walker GC.
    Langmuir; 2013 Feb 12; 29(6):1908-19. PubMed ID: 23360230
    [Abstract] [Full Text] [Related]

  • 18. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO, Doorn SK.
    Langmuir; 2008 Mar 18; 24(6):2277-80. PubMed ID: 18278969
    [Abstract] [Full Text] [Related]

  • 19. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N.
    Nanotechnology; 2012 Mar 23; 23(11):115501. PubMed ID: 22383452
    [Abstract] [Full Text] [Related]

  • 20. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD.
    J Phys Chem B; 2005 Jan 13; 109(1):312-20. PubMed ID: 16851017
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.