These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 2153108

  • 1. Kinetic studies on spin trapping of superoxide and hydroxyl radicals generated in NADPH-cytochrome P-450 reductase-paraquat systems. Effect of iron chelates.
    Yamazaki I, Piette LH, Grover TA.
    J Biol Chem; 1990 Jan 15; 265(2):652-9. PubMed ID: 2153108
    [Abstract] [Full Text] [Related]

  • 2. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J, Turro NJ, Cederbaum AI.
    Arch Biochem Biophys; 1993 Jan 15; 300(1):391-400. PubMed ID: 8380968
    [Abstract] [Full Text] [Related]

  • 3. A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation.
    Kadiiska MB, Maples KR, Mason RP.
    Arch Biochem Biophys; 1989 Nov 15; 275(1):98-111. PubMed ID: 2554814
    [Abstract] [Full Text] [Related]

  • 4. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR, Sridhar R, Griffith EH, Amma EL, Roberts J.
    Biochim Biophys Acta; 1987 Sep 24; 915(2):267-76. PubMed ID: 2820500
    [Abstract] [Full Text] [Related]

  • 5. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical.
    Pou S, Cohen MS, Britigan BE, Rosen GM.
    J Biol Chem; 1989 Jul 25; 264(21):12299-302. PubMed ID: 2545706
    [Abstract] [Full Text] [Related]

  • 6. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase.
    Bando Y, Aki K.
    J Biochem; 1991 Mar 25; 109(3):450-4. PubMed ID: 1652585
    [Abstract] [Full Text] [Related]

  • 7. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro.
    Hanna PM, Kadiiska MB, Mason RP.
    Chem Res Toxicol; 1992 Mar 25; 5(1):109-15. PubMed ID: 1316186
    [Abstract] [Full Text] [Related]

  • 8. Free radical production from the aerobic oxidation of reduced pyridine nucleotides catalysed by phenazine derivatives.
    Davis G, Thornalley PJ.
    Biochim Biophys Acta; 1983 Sep 30; 724(3):456-64. PubMed ID: 6311259
    [Abstract] [Full Text] [Related]

  • 9. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry.
    Britigan BE, Rosen GM, Chai Y, Cohen MS.
    J Biol Chem; 1986 Apr 05; 261(10):4426-31. PubMed ID: 3007455
    [Abstract] [Full Text] [Related]

  • 10. Hydroxyl radical generation by red tide algae.
    Oda T, Akaike T, Sato K, Ishimatsu A, Takeshita S, Muramatsu T, Maeda H.
    Arch Biochem Biophys; 1992 Apr 05; 294(1):38-43. PubMed ID: 1312810
    [Abstract] [Full Text] [Related]

  • 11. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study.
    Carmichael AJ.
    Free Radic Res Commun; 1990 Apr 05; 10(1-2):37-45. PubMed ID: 2165984
    [Abstract] [Full Text] [Related]

  • 12. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts.
    Finkelstein E, Rosen GM, Rauckman EJ.
    Mol Pharmacol; 1982 Mar 05; 21(2):262-5. PubMed ID: 6285165
    [Abstract] [Full Text] [Related]

  • 13. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L, Abe Y, Kanagawa K, Shoji T, Mashino T, Mochizuki M, Tanaka M, Miyata N.
    Anal Chim Acta; 2007 Sep 19; 599(2):315-9. PubMed ID: 17870296
    [Abstract] [Full Text] [Related]

  • 14. Spin trap studies on the decomposition of peroxynitrite.
    Lemercier JN, Squadrito GL, Pryor WA.
    Arch Biochem Biophys; 1995 Aug 01; 321(1):31-9. PubMed ID: 7639532
    [Abstract] [Full Text] [Related]

  • 15. A mechanism for primaquine mediated oxidation of NADPH in red blood cells.
    Thornalley PJ, Stern A, Bannister JV.
    Biochem Pharmacol; 1983 Dec 01; 32(23):3571-5. PubMed ID: 6316988
    [Abstract] [Full Text] [Related]

  • 16. Evidence for intracellular superoxide formation following the exposure of guinea pig enterocytes to bleomycin.
    Turner MJ, Bozarth CH, Strauss KE.
    Biochem Pharmacol; 1989 Jan 01; 38(1):85-90. PubMed ID: 2462883
    [Abstract] [Full Text] [Related]

  • 17. Production of oxygen-centered radicals by neutrophils and macrophages as studied by electron spin resonance (ESR).
    Bannister JV, Bannister WH.
    Environ Health Perspect; 1985 Dec 01; 64():37-43. PubMed ID: 3007099
    [Abstract] [Full Text] [Related]

  • 18. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE, Roeder TL, Buettner GR.
    Biochim Biophys Acta; 1991 Oct 31; 1075(3):213-22. PubMed ID: 1659450
    [Abstract] [Full Text] [Related]

  • 19. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV, Mason RP.
    J Biol Chem; 1990 Oct 05; 265(28):16733-6. PubMed ID: 2170352
    [Abstract] [Full Text] [Related]

  • 20. The spin trapping of superoxide and hydroxyl free radicals with DMPO (5,5-dimethylpyrroline-N-oxide): more about iron.
    Buettner GR.
    Free Radic Res Commun; 1993 Oct 05; 19 Suppl 1(0 1):S79-87. PubMed ID: 8282235
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.