These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


730 related items for PubMed ID: 21531614

  • 1. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate.
    Zhang J, Qu S, Zhang L, Tang A, Wang Z.
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):625-30. PubMed ID: 21531614
    [Abstract] [Full Text] [Related]

  • 2. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates.
    Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K, Zhao Y.
    ACS Appl Mater Interfaces; 2015 Mar 18; 7(10):5725-35. PubMed ID: 25731067
    [Abstract] [Full Text] [Related]

  • 3. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M, Balarin M, Ivanda M, Đerek V, Marciuš M, Ristić M, Gamulin O.
    Appl Spectrosc; 2015 Dec 18; 69(12):1417-24. PubMed ID: 26556231
    [Abstract] [Full Text] [Related]

  • 4. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.
    Wang JF, Wu XZ, Xiao R, Dong PT, Wang CG.
    PLoS One; 2014 Dec 18; 9(6):e97976. PubMed ID: 24886913
    [Abstract] [Full Text] [Related]

  • 5. The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper.
    Mabbott S, Larmour IA, Vishnyakov V, Xu Y, Graham D, Goodacre R.
    Analyst; 2012 Jun 21; 137(12):2791-8. PubMed ID: 22558633
    [Abstract] [Full Text] [Related]

  • 6. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL, Hsu TC, Liu YC, Yang KH, Tsai HY.
    Anal Chim Acta; 2014 Jan 02; 806():188-96. PubMed ID: 24331055
    [Abstract] [Full Text] [Related]

  • 7. Surface-enhanced Raman scattering-active silver nanostructures with two domains.
    Chang CC, Yang KH, Liu YC, Yu CC.
    Anal Chim Acta; 2012 Jan 04; 709():91-7. PubMed ID: 22122936
    [Abstract] [Full Text] [Related]

  • 8. DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering.
    Wei G, Wang L, Liu Z, Song Y, Sun L, Yang T, Li Z.
    J Phys Chem B; 2005 Dec 22; 109(50):23941-7. PubMed ID: 16375382
    [Abstract] [Full Text] [Related]

  • 9. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.
    Chen J, Feng S, Gao F, Grant E, Xu J, Wang S, Huang Q, Lu X.
    J Food Sci; 2015 Apr 22; 80(4):N834-40. PubMed ID: 25736080
    [Abstract] [Full Text] [Related]

  • 10. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L, Jiang C, Zhang Z.
    Nanoscale; 2013 May 07; 5(9):3773-9. PubMed ID: 23535912
    [Abstract] [Full Text] [Related]

  • 11. Cylindrical posts of Ag/SiO₂/Au multi-segment layer patterns for highly efficient surface enhanced Raman scattering.
    Kim KH, Baek YK, Jeon HJ, Srinivasarao M, Jung HT.
    Nanotechnology; 2012 Aug 10; 23(31):315302. PubMed ID: 22802161
    [Abstract] [Full Text] [Related]

  • 12. Fabrication of a bowl-shaped silver cavity substrate for SERS-based immunoassay.
    Tian S, Zhou Q, Gu Z, Gu X, Zheng J.
    Analyst; 2013 May 07; 138(9):2604-12. PubMed ID: 23476921
    [Abstract] [Full Text] [Related]

  • 13. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.
    Hao Z, Mansuer M, Guo Y, Zhu Z, Wang X.
    Talanta; 2016 May 07; 146():533-9. PubMed ID: 26695301
    [Abstract] [Full Text] [Related]

  • 14. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine.
    Cao Q, Yuan K, Yu J, Delaunay JJ, Che R.
    J Colloid Interface Sci; 2017 Mar 15; 490():23-28. PubMed ID: 27870955
    [Abstract] [Full Text] [Related]

  • 15. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays.
    Schmidt JP, Cross SE, Buratto SK.
    J Chem Phys; 2004 Dec 01; 121(21):10657-9. PubMed ID: 15549949
    [Abstract] [Full Text] [Related]

  • 16. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N, Li H, Xie Y, Feng Z, Wang Z, Yang Z, Yan X, Wang W, Tian C, Yu H.
    Electrophoresis; 2019 Dec 01; 40(23-24):3123-3131. PubMed ID: 31576580
    [Abstract] [Full Text] [Related]

  • 17. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates.
    Xu D, Kang W, Zhang S, Yang W, Jiang H, Lei Y, Chen J.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct 05; 221():117184. PubMed ID: 31158773
    [Abstract] [Full Text] [Related]

  • 18. Investigation of chemically modified barium titanate beads as surface-enhanced Raman scattering (SERS) active substrates for the detection of benzene thiol, 1,2-benzene dithiol, and rhodamine 6G.
    Onuegbu J, Fu A, Glembocki O, Pokes S, Alexson D, Hosten CM.
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug 05; 79(3):456-61. PubMed ID: 21531612
    [Abstract] [Full Text] [Related]

  • 19. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J, Qin G, Wang J, Yu J, Shen B, Li S, Ren Y, Zuo L, Shen W, Das B.
    Biosens Bioelectron; 2013 Jun 15; 44():191-7. PubMed ID: 23428732
    [Abstract] [Full Text] [Related]

  • 20. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection.
    Yu WW, White IM.
    Analyst; 2012 Mar 07; 137(5):1168-73. PubMed ID: 22282766
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.