These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


466 related items for PubMed ID: 21532660

  • 1. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J, Bloch P, Xu J, Sarunic MV, Shannon L.
    Appl Opt; 2011 May 01; 50(13):1832-8. PubMed ID: 21532660
    [Abstract] [Full Text] [Related]

  • 2. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.
    Watanabe Y, Maeno S, Aoshima K, Hasegawa H, Koseki H.
    Appl Opt; 2010 Sep 01; 49(25):4756-62. PubMed ID: 20820218
    [Abstract] [Full Text] [Related]

  • 3. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system].
    Liu Q, Li Y, Xu Q, Zhao J, Wang L, Gao Y.
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan 01; 37(1):1-5. PubMed ID: 23668032
    [Abstract] [Full Text] [Related]

  • 4. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J, Sugden K, Tomlins PH.
    J Biomed Opt; 2011 Feb 01; 16(2):020505. PubMed ID: 21361661
    [Abstract] [Full Text] [Related]

  • 5. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW, Reynolds JJ, Marks DL, Boppart SA.
    IEEE Trans Biomed Eng; 2004 Jan 01; 51(1):186-90. PubMed ID: 14723509
    [Abstract] [Full Text] [Related]

  • 6. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion.
    Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Kitabata H, Kubo T, Nakamura N, Hirata K, Tanaka A, Mizukoshi M, Akasaka T.
    Catheter Cardiovasc Interv; 2010 Feb 01; 75(2):202-6. PubMed ID: 19937788
    [Abstract] [Full Text] [Related]

  • 7. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation.
    Fan C, Yao G.
    Opt Express; 2010 Mar 29; 18(7):7281-7. PubMed ID: 20389749
    [Abstract] [Full Text] [Related]

  • 8. Performance evaluation of image processing algorithms on the GPU.
    Castaño-Díez D, Moser D, Schoenegger A, Pruggnaller S, Frangakis AS.
    J Struct Biol; 2008 Oct 29; 164(1):153-60. PubMed ID: 18692140
    [Abstract] [Full Text] [Related]

  • 9. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.
    Zhang K, Kang JU.
    Opt Express; 2010 May 24; 18(11):11772-84. PubMed ID: 20589038
    [Abstract] [Full Text] [Related]

  • 10. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.
    Zhang B, Yang X, Yang F, Yang X, Qin C, Han D, Ma X, Liu K, Tian J.
    Opt Express; 2010 Sep 13; 18(19):20201-14. PubMed ID: 20940911
    [Abstract] [Full Text] [Related]

  • 11. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.
    Chan KK, Tang S.
    Opt Express; 2011 Dec 19; 19(27):26891-904. PubMed ID: 22274272
    [Abstract] [Full Text] [Related]

  • 12. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability.
    Prakash G, Agarwal A, Jacob S, Kumar DA, Agarwal A, Banerjee R.
    Am J Ophthalmol; 2009 Aug 19; 148(2):282-290.e2. PubMed ID: 19442961
    [Abstract] [Full Text] [Related]

  • 13. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S, Bradu A, Podoleanu AG.
    J Biomed Opt; 2010 Aug 19; 15(3):030511. PubMed ID: 20614994
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D, Bonin T, Lührs C, Franke G, Hagen-Eggert M, Koch P, Hüttmann G.
    Opt Express; 2012 Mar 12; 20(6):6761-76. PubMed ID: 22418560
    [Abstract] [Full Text] [Related]

  • 16. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography.
    Menke MN, Dabov S, Sturm V.
    Br J Ophthalmol; 2008 Nov 12; 92(11):1492-7. PubMed ID: 18703554
    [Abstract] [Full Text] [Related]

  • 17. Fourier Domain Optical Coherence Tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT.
    Stehouwer M, Verbraak FD, de Vries H, Kok PH, van Leeuwen TG.
    Eye (Lond); 2010 Jun 12; 24(6):980-4. PubMed ID: 19911024
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages.
    Okamura T, Gonzalo N, Gutiérrez-Chico JL, Serruys PW, Bruining N, de Winter S, Dijkstra J, Commossaris KH, van Geuns RJ, van Soest G, Ligthart J, Regar E.
    EuroIntervention; 2010 Aug 12; 6(3):371-9. PubMed ID: 20884417
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.