These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument. Yuan X, Carter BP, Schmidt SJ. J Food Sci; 2011; 76(1):E78-89. PubMed ID: 21535679 [Abstract] [Full Text] [Related]
3. Determining the critical relative humidity for moisture-induced phase transitions. Burnett DJ, Thielmann F, Booth J. Int J Pharm; 2004 Dec 09; 287(1-2):123-33. PubMed ID: 15541919 [Abstract] [Full Text] [Related]
4. Effect of aging on the physical properties of amorphous trehalose. Surana R, Pyne A, Suryanarayanan R. Pharm Res; 2004 May 09; 21(5):867-74. PubMed ID: 15180347 [Abstract] [Full Text] [Related]
5. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument. Yu X, Kappes SM, Bello-Perez LA, Schmidt SJ. J Food Sci; 2008 Jan 09; 73(1):E25-35. PubMed ID: 18211350 [Abstract] [Full Text] [Related]
7. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose. Buehler MG, Kindle ML, Carter BP. J Food Sci; 2015 Jun 09; 80(6):E1243-52. PubMed ID: 25944358 [Abstract] [Full Text] [Related]
8. Water-solid interactions. III. Effect of glass transition temperature, Tg, and processing on tensile strength of compacts of lactose and lactose/polyvinyl pyrrolidone. Stubberud L, Arwidsson HG, Hjortsberg V, Graffner C. Pharm Dev Technol; 1996 Jul 09; 1(2):195-204. PubMed ID: 9552346 [Abstract] [Full Text] [Related]
12. Determination of the bulk moisture diffusion coefficient for corn starch using an automated water sorption instrument. Yu X, Schmidt AR, Bello-Perez LA, Schmidt SJ. J Agric Food Chem; 2008 Jan 09; 56(1):50-8. PubMed ID: 18078318 [Abstract] [Full Text] [Related]
13. An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature. Qi S, Weuts I, De Cort S, Stokbroekx S, Leemans R, Reading M, Belton P, Craig DQ. J Pharm Sci; 2010 Jan 09; 99(1):196-208. PubMed ID: 19492312 [Abstract] [Full Text] [Related]
16. Water-solid interactions between amorphous maltodextrins and crystalline sodium chloride. Ghorab MK, Marrs K, Taylor LS, Mauer LJ. Food Chem; 2014 Feb 01; 144():26-35. PubMed ID: 24099538 [Abstract] [Full Text] [Related]
17. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: a test of the Flory-Huggins and Vrentas models. Hancock BC, Zografi G. Pharm Res; 1993 Sep 01; 10(9):1262-7. PubMed ID: 8234160 [Abstract] [Full Text] [Related]
19. A food polymer science approach to structure-property relationships in aqueous food systems: non-equilibrium behavior of carbohydrate-water systems. Slade L, Levine H. Adv Exp Med Biol; 1991 Sep 01; 302():29-101. PubMed ID: 1746335 [Abstract] [Full Text] [Related]
20. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study. Simperler A, Kornherr A, Chopra R, Jones W, Motherwell WD, Zifferer G. Carbohydr Res; 2007 Aug 13; 342(11):1470-9. PubMed ID: 17511976 [Abstract] [Full Text] [Related] Page: [Next] [New Search]