These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 21536479

  • 1. What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants?
    Trontin C, Tisné S, Bach L, Loudet O.
    Curr Opin Plant Biol; 2011 Jun; 14(3):225-31. PubMed ID: 21536479
    [Abstract] [Full Text] [Related]

  • 2. Natural variation and genetic constraints on drought tolerance.
    Juenger TE.
    Curr Opin Plant Biol; 2013 Jun; 16(3):274-81. PubMed ID: 23462639
    [Abstract] [Full Text] [Related]

  • 3. Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.
    Kronholm I, Picó FX, Alonso-Blanco C, Goudet J, de Meaux J.
    Evolution; 2012 Jul; 66(7):2287-302. PubMed ID: 22759302
    [Abstract] [Full Text] [Related]

  • 4. From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development.
    Alonso-Blanco C, Mendez-Vigo B, Koornneef M.
    Int J Dev Biol; 2005 Jul; 49(5-6):717-32. PubMed ID: 16096977
    [Abstract] [Full Text] [Related]

  • 5. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments.
    Verslues PE, Juenger TE.
    Curr Opin Plant Biol; 2011 Jun; 14(3):240-5. PubMed ID: 21561798
    [Abstract] [Full Text] [Related]

  • 6. Adaptation to climate across the Arabidopsis thaliana genome.
    Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J.
    Science; 2011 Oct 07; 334(6052):83-6. PubMed ID: 21980108
    [Abstract] [Full Text] [Related]

  • 7. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.
    Roux F, Bergelson J.
    Curr Top Dev Biol; 2016 Oct 07; 119():111-56. PubMed ID: 27282025
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Signals of speciation within Arabidopsis thaliana in comparison with its relatives.
    Alcázar R, Pecinka A, Aarts MG, Fransz PF, Koornneef M.
    Curr Opin Plant Biol; 2012 Apr 07; 15(2):205-11. PubMed ID: 22265228
    [Abstract] [Full Text] [Related]

  • 10. Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model.
    Gailing O, Vornam B, Leinemann L, Finkeldey R.
    Physiol Plant; 2009 Dec 07; 137(4):509-19. PubMed ID: 19627554
    [Abstract] [Full Text] [Related]

  • 11. Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana.
    Brock MT, Tiffin P, Weinig C.
    Mol Ecol; 2007 Jul 07; 16(14):3050-62. PubMed ID: 17614917
    [Abstract] [Full Text] [Related]

  • 12. Epigenetic variation contributes to environmental adaptation of Arabidopsis thaliana.
    Kooke R, Keurentjes JJ.
    Plant Signal Behav; 2015 Jul 07; 10(9):e1057368. PubMed ID: 26237693
    [Abstract] [Full Text] [Related]

  • 13. Quantitative trait loci affecting delta13C and response to differential water availibility in Arabidopsis thaliana.
    Hausmann NJ, Juenger TE, Sen S, Stowe KA, Dawson TE, Simms EL.
    Evolution; 2005 Jan 07; 59(1):81-96. PubMed ID: 15792229
    [Abstract] [Full Text] [Related]

  • 14. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles.
    Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD.
    Genetics; 2004 Jul 07; 167(3):1361-9. PubMed ID: 15280248
    [Abstract] [Full Text] [Related]

  • 15. Identification and characterization of quantitative trait loci that control seed dormancy in Arabidopsis.
    Bentsink L, Koornneef M.
    Methods Mol Biol; 2011 Jul 07; 773():165-84. PubMed ID: 21898256
    [Abstract] [Full Text] [Related]

  • 16. Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
    Juenger TE, Sen S, Bray E, Stahl E, Wayne T, McKay J, Richards JH.
    Plant Cell Environ; 2010 Aug 01; 33(8):1268-84. PubMed ID: 20302603
    [Abstract] [Full Text] [Related]

  • 17. Epistasis and balanced polymorphism influencing complex trait variation.
    Kroymann J, Mitchell-Olds T.
    Nature; 2005 May 05; 435(7038):95-8. PubMed ID: 15875023
    [Abstract] [Full Text] [Related]

  • 18. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana.
    Brock MT, Maloof JN, Weinig C.
    Mol Ecol; 2010 Mar 05; 19(6):1187-99. PubMed ID: 20456226
    [Abstract] [Full Text] [Related]

  • 19. Epigenetic contribution to stress adaptation in plants.
    Mirouze M, Paszkowski J.
    Curr Opin Plant Biol; 2011 Jun 05; 14(3):267-74. PubMed ID: 21450514
    [Abstract] [Full Text] [Related]

  • 20. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping.
    Ehrenreich IM, Stafford PA, Purugganan MD.
    Genetics; 2007 Jun 05; 176(2):1223-36. PubMed ID: 17435248
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.