These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 215384

  • 1. The role of cyclic-AMP-dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle.
    Cohen P.
    Curr Top Cell Regul; 1978; 14():117-96. PubMed ID: 215384
    [No Abstract] [Full Text] [Related]

  • 2. The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation.
    Cohen P.
    Biochem Soc Trans; 1979 Jun; 7(3):459-80. PubMed ID: 221283
    [No Abstract] [Full Text] [Related]

  • 3. The role of calmodulin, troponin, and cyclic AMP in the regulation of glycogen metabolism in mammalian skeletal muscle.
    Cohen P.
    Adv Cyclic Nucleotide Res; 1981 Jun; 14():345-59. PubMed ID: 6269387
    [No Abstract] [Full Text] [Related]

  • 4. The substrate specificity and regulation of the protein phosphatases involved in the control of glycogen metabolism in mammalian skeletal muscle.
    Cohen P, Nimmo GA, Burchell A, Antoniw JF.
    Adv Enzyme Regul; 1981 Jun; 16():97-119. PubMed ID: 211821
    [No Abstract] [Full Text] [Related]

  • 5. The role of phosphorylase kinase in the nervous and hormonal control of glycogenolysis in muscle.
    Cohen P.
    Biochem Soc Symp; 1974 Jun; (39):51-73. PubMed ID: 4377911
    [No Abstract] [Full Text] [Related]

  • 6. Regulation of phosphoprotein phosphatase by phosphorylation of other proteins in skeletal muscle.
    Gergely P, Dombrádi V, Bot G.
    FEBS Lett; 1978 Sep 15; 93(2):239-41. PubMed ID: 213308
    [No Abstract] [Full Text] [Related]

  • 7. Hormonal control of protein phosphorylation.
    Nimmo HG, Cohen P.
    Adv Cyclic Nucleotide Res; 1977 Sep 15; 8():145-266. PubMed ID: 200126
    [No Abstract] [Full Text] [Related]

  • 8. Glycogen synthase and glycogen synthase kinases.
    Roach PJ.
    Curr Top Cell Regul; 1981 Sep 15; 20():45-105. PubMed ID: 6276084
    [No Abstract] [Full Text] [Related]

  • 9. Enzymatic control of glycogen degradation in smooth muscle.
    Sotiroudis TG, Nikolaropoulos S, Zevgolis VG, Papageorgiou AC, Evangelopoulos AE.
    Prog Clin Biol Res; 1988 Sep 15; 259():391-411. PubMed ID: 2834743
    [No Abstract] [Full Text] [Related]

  • 10. Phosphorylation of rabbit skeletal muscle glycogen synthase by cyclic AMP-dependent protein kinase and dephosphorylation of the synthase by phosphatases.
    Huang KP, Huang FL.
    J Biol Chem; 1980 Apr 10; 255(7):3141-7. PubMed ID: 6244308
    [No Abstract] [Full Text] [Related]

  • 11. Phosphorylation of glycogen synthase by cyclic AMP-independent glycogen synthases kinase-1 (GSK-1) comparative study with cyclic AMP-dependent protein kinase and phosphorylase kinase.
    Vila J, Salavert A, Itarte E, Guinovart JJ.
    Arch Biochem Biophys; 1982 Oct 01; 218(1):1-7. PubMed ID: 6293379
    [No Abstract] [Full Text] [Related]

  • 12. Phosphorylation-dephosphorylation of enzymes.
    Krebs EG, Beavo JA.
    Annu Rev Biochem; 1979 Oct 01; 48():923-59. PubMed ID: 38740
    [No Abstract] [Full Text] [Related]

  • 13. Recent advances in glycogen metabolism.
    Soderling TR, Park CR.
    Adv Cyclic Nucleotide Res; 1974 Oct 01; 4(0):283-333. PubMed ID: 4369118
    [No Abstract] [Full Text] [Related]

  • 14. Comparison of enzyme activities on glycogen metabolism in rabbit slow and fast muscles.
    Tsutou A, Nakamura S, Negami A, Nakaza T, Kobayashi T, Mizuta K, Hashimoto E, Yamamura H.
    Comp Biochem Physiol B; 1985 Oct 01; 81(3):641-5. PubMed ID: 2992876
    [Abstract] [Full Text] [Related]

  • 15. The developmental formation of enzymes involved in glycogen metabolism.
    Piras R, Piras MM.
    Enzyme; 1973 Oct 01; 15(1):82-96. PubMed ID: 4361642
    [No Abstract] [Full Text] [Related]

  • 16. Molecular mechanisms involved in the control of glycogenolysis in skeletal muscle by calcium ions and cyclic AMP.
    Cohen P.
    Biochem Soc Trans; 1987 Oct 01; 15(5):999-1001. PubMed ID: 2826274
    [No Abstract] [Full Text] [Related]

  • 17. Comparison of calcium-activated, cyclic nucleotide-independent protein kinase and adenosine 3':5'-monophosphate-dependent protein kinase as regards the ability to stimulate glycogen breakdown in vitro.
    Kishimoto A, Mori T, Takai Y, Nishizuka Y.
    J Biochem; 1978 Jul 01; 84(1):47-53. PubMed ID: 211121
    [Abstract] [Full Text] [Related]

  • 18. Phosphorylation and dephosphorylation of glycogen phosphorylase: a prototype for reversible covalent enzyme modification.
    Krebs EG.
    Curr Top Cell Regul; 1981 Jul 01; 18():401-19. PubMed ID: 6268366
    [No Abstract] [Full Text] [Related]

  • 19. [Regulation of glycogen metabolism in the liver and hepatic glycogenosis due to phosphorylase system deficiency].
    Lemonnier A, Moatti N, Baussan C.
    C R Seances Soc Biol Fil; 1979 Jul 01; 173(2):483-95. PubMed ID: 228813
    [Abstract] [Full Text] [Related]

  • 20. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase.
    Schwartz A, Entman ML, Kaniike K, Lane LK, Van Winkle WB, Bornet EP.
    Biochim Biophys Acta; 1976 Feb 19; 426(1):57-72. PubMed ID: 2325
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.