These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 21542688
1. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury. Yoshitomi T, Nagasaki Y. Nanomedicine (Lond); 2011 Apr; 6(3):509-18. PubMed ID: 21542688 [Abstract] [Full Text] [Related]
2. pH-sensitive radical-containing-nanoparticle (RNP) for the L-band-EPR imaging of low pH circumstances. Yoshitomi T, Suzuki R, Mamiya T, Matsui H, Hirayama A, Nagasaki Y. Bioconjug Chem; 2009 Sep; 20(9):1792-8. PubMed ID: 19685867 [Abstract] [Full Text] [Related]
3. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Yoshitomi T, Nagasaki Y. Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427 [Abstract] [Full Text] [Related]
4. Design of core--shell-type nanoparticles carrying stable radicals in the core. Yoshitomi T, Miyamoto D, Nagasaki Y. Biomacromolecules; 2009 Mar 09; 10(3):596-601. PubMed ID: 19191564 [Abstract] [Full Text] [Related]
5. Newly synthesized radical-containing nanoparticles enhance neuroprotection after cerebral ischemia-reperfusion injury. Marushima A, Suzuki K, Nagasaki Y, Yoshitomi T, Toh K, Tsurushima H, Hirayama A, Matsumura A. Neurosurgery; 2011 May 09; 68(5):1418-25; discussion 1425-6. PubMed ID: 21273921 [Abstract] [Full Text] [Related]
6. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Yoshitomi T, Hirayama A, Nagasaki Y. Biomaterials; 2011 Nov 09; 32(31):8021-8. PubMed ID: 21816462 [Abstract] [Full Text] [Related]
7. Neurovascular Unit Protection From Cerebral Ischemia-Reperfusion Injury by Radical-Containing Nanoparticles in Mice. Hosoo H, Marushima A, Nagasaki Y, Hirayama A, Ito H, Puentes S, Mujagic A, Tsurushima H, Tsuruta W, Suzuki K, Matsui H, Matsumaru Y, Yamamoto T, Matsumura A. Stroke; 2017 Aug 09; 48(8):2238-2247. PubMed ID: 28655813 [Abstract] [Full Text] [Related]
8. Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma. Takahashi T, Marushima A, Nagasaki Y, Hirayama A, Muroi A, Puentes S, Mujagic A, Ishikawa E, Matsumura A. J Trauma Acute Care Surg; 2020 May 09; 88(5):677-685. PubMed ID: 32039974 [Abstract] [Full Text] [Related]
9. Self-Assembling Antioxidants for Ischemia-Reperfusion Injuries. Yoshitomi T, Nagasaki Y. Antioxid Redox Signal; 2022 Jan 09; 36(1-3):70-80. PubMed ID: 34074133 [Abstract] [Full Text] [Related]
10. Novel Synthesized Radical-Containing Nanoparticles Limit Infarct Size Following Ischemia and Reperfusion in Canine Hearts. Asanuma H, Sanada S, Yoshitomi T, Sasaki H, Takahama H, Ihara M, Takahama H, Shinozaki Y, Mori H, Asakura M, Nakano A, Sugimachi M, Asano Y, Minamino T, Takashima S, Nagasaki Y, Kitakaze M. Cardiovasc Drugs Ther; 2017 Dec 09; 31(5-6):501-510. PubMed ID: 29101507 [Abstract] [Full Text] [Related]
11. Antioxidant nanomedicine with cytoplasmic distribution in neuronal cells shows superior neurovascular protection properties. Mujagić A, Marushima A, Nagasaki Y, Hosoo H, Hirayama A, Puentes S, Takahashi T, Tsurushima H, Suzuki K, Matsui H, Ishikawa E, Matsumaru Y, Matsumura A. Brain Res; 2020 Sep 15; 1743():146922. PubMed ID: 32504549 [Abstract] [Full Text] [Related]
12. Nitroxide radicals and nanoparticles: a partnership for nanomedicine radical delivery. Nagasaki Y. Ther Deliv; 2012 Feb 15; 3(2):165-79. PubMed ID: 22834195 [Abstract] [Full Text] [Related]
13. Micelle formation induced by disproportionation of stable nitroxyl radicals supported on a diblock copolymer. Yoshida E, Ogawa H. J Oleo Sci; 2007 Feb 15; 56(6):297-302. PubMed ID: 17898495 [Abstract] [Full Text] [Related]
14. Chemical nanotherapy: nitroxyl radical-containing nanoparticle protects neuroblastoma SH-SY5Y cells from Abeta-induced oxidative stress. Chonpathompikunlert P, Yoshitomi T, Han J, Toh K, Isoda H, Nagasaki Y. Ther Deliv; 2011 May 15; 2(5):585-97. PubMed ID: 22833976 [Abstract] [Full Text] [Related]
15. PEG-b-(PELG-g-PLL) nanoparticles as TNF-α nanocarriers: potential cerebral ischemia/reperfusion injury therapeutic applications. Xu G, Gu H, Hu B, Tong F, Liu D, Yu X, Zheng Y, Gu J. Int J Nanomedicine; 2017 May 15; 12():2243-2254. PubMed ID: 28356740 [Abstract] [Full Text] [Related]
16. Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos. Shashni B, Tamaoki J, Kobayashi M, Nagasaki Y. Acta Biomater; 2023 Mar 15; 159():367-381. PubMed ID: 36640953 [Abstract] [Full Text] [Related]
17. pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. Gao GH, Lee JW, Nguyen MK, Im GH, Yang J, Heo H, Jeon P, Park TG, Lee JH, Lee DS. J Control Release; 2011 Oct 10; 155(1):11-7. PubMed ID: 20854855 [Abstract] [Full Text] [Related]
18. Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer. Thangavel S, Yoshitomi T, Sakharkar MK, Nagasaki Y. J Control Release; 2015 Jul 10; 209():110-9. PubMed ID: 25912409 [Abstract] [Full Text] [Related]
19. Nitroxyl radicals for labeling of conventional therapeutics and noninvasive magnetic resonance imaging of their permeability for blood-brain barrier: relationship between structure, blood clearance, and MRI signal dynamic in the brain. Zhelev Z, Bakalova R, Aoki I, Matsumoto K, Gadjeva V, Anzai K, Kanno I. Mol Pharm; 2009 Jul 10; 6(2):504-12. PubMed ID: 19718801 [Abstract] [Full Text] [Related]
20. Possible artefacts of antioxidant assays performed in the presence of nitroxides and nitroxide-containing nanoparticles. Pichla M, Bartosz G, Pieńkowska N, Sadowska-Bartosz I. Anal Biochem; 2020 May 15; 597():113698. PubMed ID: 32222539 [Abstract] [Full Text] [Related] Page: [Next] [New Search]