These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 21547296

  • 1. Multiple kinetic Langmuir modeling to predict the environmental behaviour of As(v) in soils.
    van Elteren JT, Slejkovec Z, Arčon I, Beeston MP, Pohar A.
    J Environ Monit; 2011 Jun; 13(6):1625-33. PubMed ID: 21547296
    [Abstract] [Full Text] [Related]

  • 2. Environmental behavior of arsenic(III) and (V) in soils.
    Dias FF, Allen HE, Guimarães JR, Taddei MH, Nascimento MR, Guilherme LR.
    J Environ Monit; 2009 Jul; 11(7):1412-20. PubMed ID: 20449232
    [Abstract] [Full Text] [Related]

  • 3. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile.
    Ascar L, Ahumada I, Richter P.
    Chemosphere; 2008 Jan; 70(7):1211-7. PubMed ID: 17889255
    [Abstract] [Full Text] [Related]

  • 4. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate.
    Majzlan J.
    Environ Sci Technol; 2011 Jun 01; 45(11):4726-32. PubMed ID: 21557572
    [Abstract] [Full Text] [Related]

  • 5. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M, He F, Zhao D, Hao X.
    Water Res; 2011 Mar 01; 45(7):2401-14. PubMed ID: 21376362
    [Abstract] [Full Text] [Related]

  • 6. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils.
    Filipe OM, Costa CA, Vidal MM, Santos EB.
    Chemosphere; 2013 Jan 01; 90(2):432-40. PubMed ID: 22951356
    [Abstract] [Full Text] [Related]

  • 7. Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption.
    Yolcubal I, Akyol NH.
    Chemosphere; 2008 Nov 01; 73(8):1300-7. PubMed ID: 18718636
    [Abstract] [Full Text] [Related]

  • 8. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y, Weng L.
    Environ Sci Technol; 2013 Jul 02; 47(13):7269-76. PubMed ID: 23751067
    [Abstract] [Full Text] [Related]

  • 9. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M, Rajapaksha AU, Dou X, Bolan NS, Yang JE, Ok YS.
    J Colloid Interface Sci; 2013 Sep 15; 406():217-24. PubMed ID: 23791229
    [Abstract] [Full Text] [Related]

  • 10. Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation.
    Loffredo N, Mounier S, Thiry Y, Coppin F.
    J Environ Radioact; 2011 Sep 15; 102(9):843-51. PubMed ID: 21683486
    [Abstract] [Full Text] [Related]

  • 11. Desorption kinetics of arsenate from kaolinite as influenced by pH.
    Quaghebeur M, Rate A, Rengel Z, Hinz C.
    J Environ Qual; 2005 Sep 15; 34(2):479-86. PubMed ID: 15758100
    [Abstract] [Full Text] [Related]

  • 12. Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils.
    Shimizu M, Arai Y, Sparks DL.
    Environ Sci Technol; 2011 May 15; 45(10):4293-9. PubMed ID: 21488668
    [Abstract] [Full Text] [Related]

  • 13. Kinetics of arsenate adsorption-desorption in soils.
    Zhang H, Selim HM.
    Environ Sci Technol; 2005 Aug 15; 39(16):6101-8. PubMed ID: 16173569
    [Abstract] [Full Text] [Related]

  • 14. Some models for the adsorption kinetics of pesticides in soil.
    Leistra M, Dekkers WA.
    J Environ Sci Health B; 1977 Aug 15; 12(2):85-103. PubMed ID: 874296
    [Abstract] [Full Text] [Related]

  • 15. The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride.
    Biver M, Krachler M, Shotyk W.
    J Environ Qual; 2011 Aug 15; 40(4):1143-52. PubMed ID: 21712584
    [Abstract] [Full Text] [Related]

  • 16. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T.
    Chemosphere; 2011 May 15; 83(7):925-32. PubMed ID: 21420713
    [Abstract] [Full Text] [Related]

  • 17. Analytical solutions for reactive transport under an infiltration-redistribution cycle.
    Severino G, Indelman P.
    J Contam Hydrol; 2004 May 15; 70(1-2):89-115. PubMed ID: 15068870
    [Abstract] [Full Text] [Related]

  • 18. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy.
    Makris KC, Sarkar D, Parsons JG, Datta R, Gardea-Torresdey JL.
    J Colloid Interface Sci; 2007 Jul 15; 311(2):544-50. PubMed ID: 17448489
    [Abstract] [Full Text] [Related]

  • 19. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.
    Shi Z, Peltier E, Sparks DL.
    Environ Sci Technol; 2012 Feb 21; 46(4):2212-9. PubMed ID: 22283487
    [Abstract] [Full Text] [Related]

  • 20. Extended geometric method: a simple approach to derive adsorption rate constants of Langmuir-Freundlich kinetics.
    Azizian S, Haerifar M, Basiri-Parsa J.
    Chemosphere; 2007 Aug 21; 68(11):2040-6. PubMed ID: 17408722
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.