These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


340 related items for PubMed ID: 21553909

  • 21. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC, Rullich M, Köhler C, Frauenheim T.
    J Chem Phys; 2011 Jul 21; 135(3):034701. PubMed ID: 21787017
    [Abstract] [Full Text] [Related]

  • 22. Clusters of classical water models.
    Kiss PT, Baranyai A.
    J Chem Phys; 2009 Nov 28; 131(20):204310. PubMed ID: 19947683
    [Abstract] [Full Text] [Related]

  • 23. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models.
    Chatterjee S, Debenedetti PG, Stillinger FH, Lynden-Bell RM.
    J Chem Phys; 2008 Mar 28; 128(12):124511. PubMed ID: 18376947
    [Abstract] [Full Text] [Related]

  • 24. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R, Sum AK, Narumi T, Yasuoka K.
    J Chem Phys; 2011 Mar 28; 134(12):124708. PubMed ID: 21456696
    [Abstract] [Full Text] [Related]

  • 25. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water.
    Raabe G, Sadus RJ.
    J Chem Phys; 2012 Sep 14; 137(10):104512. PubMed ID: 22979879
    [Abstract] [Full Text] [Related]

  • 26. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C, Abascal JL.
    J Chem Phys; 2005 Oct 08; 123(14):144504. PubMed ID: 16238404
    [Abstract] [Full Text] [Related]

  • 27. Softness dependence of the anomalies for the continuous shouldered well potential.
    Vilaseca P, Franzese G.
    J Chem Phys; 2010 Aug 28; 133(8):084507. PubMed ID: 20815580
    [Abstract] [Full Text] [Related]

  • 28. Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water.
    Zielkiewicz J.
    J Chem Phys; 2005 Sep 08; 123(10):104501. PubMed ID: 16178604
    [Abstract] [Full Text] [Related]

  • 29. On the use of excess entropy scaling to describe the dynamic properties of water.
    Chopra R, Truskett TM, Errington JR.
    J Phys Chem B; 2010 Aug 19; 114(32):10558-66. PubMed ID: 20701386
    [Abstract] [Full Text] [Related]

  • 30. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C, Abascal JL, Nezbeda I.
    J Chem Phys; 2006 Jul 21; 125(3):34503. PubMed ID: 16863358
    [Abstract] [Full Text] [Related]

  • 31. A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q.
    Alejandre J, Chapela GA, Saint-Martin H, Mendoza N.
    Phys Chem Chem Phys; 2011 Nov 28; 13(44):19728-40. PubMed ID: 21922085
    [Abstract] [Full Text] [Related]

  • 32. Representability problems for coarse-grained water potentials.
    Johnson ME, Head-Gordon T, Louis AA.
    J Chem Phys; 2007 Apr 14; 126(14):144509. PubMed ID: 17444725
    [Abstract] [Full Text] [Related]

  • 33. Properties of ices at 0 K: a test of water models.
    Aragones JL, Noya EG, Abascal JL, Vega C.
    J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184
    [Abstract] [Full Text] [Related]

  • 34. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
    Fuentes-Azcatl R, Alejandre J.
    J Phys Chem B; 2014 Feb 06; 118(5):1263-72. PubMed ID: 24422512
    [Abstract] [Full Text] [Related]

  • 35. Nonequilibrium molecular dynamics simulations of the thermal conductivity of water: a systematic investigation of the SPC/E and TIP4P/2005 models.
    Römer F, Lervik A, Bresme F.
    J Chem Phys; 2012 Aug 21; 137(7):074503. PubMed ID: 22920127
    [Abstract] [Full Text] [Related]

  • 36. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model.
    Abascal JL, Vega C.
    J Chem Phys; 2010 Dec 21; 133(23):234502. PubMed ID: 21186870
    [Abstract] [Full Text] [Related]

  • 37. Transport coefficients of the TIP4P-2005 water model.
    Rozmanov D, Kusalik PG.
    J Chem Phys; 2012 Jan 28; 136(4):044507. PubMed ID: 22299891
    [Abstract] [Full Text] [Related]

  • 38. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
    Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T.
    J Chem Phys; 2004 May 22; 120(20):9665-78. PubMed ID: 15267980
    [Abstract] [Full Text] [Related]

  • 39. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW, Swope WC, Pitera JW.
    J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097
    [Abstract] [Full Text] [Related]

  • 40. Relationship between structure, entropy, and diffusivity in water and water-like liquids.
    Agarwal M, Singh M, Sharma R, Alam MP, Chakravarty C.
    J Phys Chem B; 2010 May 27; 114(20):6995-7001. PubMed ID: 20438068
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.