These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 21554000

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Zn(II), Cd(II) and Cu(II) interactions on glutathione reductase and glucose-6-phosphate dehydrogenase.
    Serafini MT, Romeu A, Arola L.
    Biochem Int; 1989 Apr; 18(4):793-802. PubMed ID: 2669761
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Mercury and the activity of erythrocyte and bone marrow glutathione reductase (E.C. 1.6.4.2.) and glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) in rats.
    Miszta H.
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1984 Apr; 111(5):638-44. PubMed ID: 6083939
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Glutathione reductase and glucose-6-phosphate dehydrogenase in erythrocytes treated with heavy metals.
    Ribarov S, Benov L.
    Acta Physiol Pharmacol Bulg; 1985 Apr; 11(3):51-4. PubMed ID: 3832794
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs.
    Hohl RJ, Kennedy EJ, Frischer H.
    J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase.
    Jain M, Cui L, Brenner DA, Wang B, Handy DE, Leopold JA, Loscalzo J, Apstein CS, Liao R.
    Circulation; 2004 Feb 24; 109(7):898-903. PubMed ID: 14757696
    [Abstract] [Full Text] [Related]

  • 15. Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride.
    Brocardo PS, Pandolfo P, Takahashi RN, Rodrigues AL, Dafre AL.
    Toxicology; 2005 Feb 14; 207(2):283-91. PubMed ID: 15596258
    [Abstract] [Full Text] [Related]

  • 16. Purification and characterization of glutathione reductase from rainbow trout (Oncorhynchus mykiss) liver and inhibition effects of metal ions on enzyme activity.
    Tekman B, Ozdemir H, Senturk M, Ciftci M.
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Aug 14; 148(2):117-21. PubMed ID: 18508412
    [Abstract] [Full Text] [Related]

  • 17. Thioltransferase can utilize cysteamine as same as glutathione as a reductant during the restoration of cystamine-treated glucose 6-phosphate dehydrogenase activity.
    Terada T.
    Biochem Mol Biol Int; 1994 Oct 14; 34(4):723-7. PubMed ID: 7866298
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Regulation of the pentose phosphate cycle.
    Eggleston LV, Krebs HA.
    Biochem J; 1974 Mar 14; 138(3):425-35. PubMed ID: 4154743
    [Abstract] [Full Text] [Related]

  • 20. Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG.
    Llobell A, Lopez-Ruiz A, Peinado J, Lopez-Barea J.
    Biochem J; 1988 Jan 01; 249(1):293-6. PubMed ID: 3277619
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.