These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


652 related items for PubMed ID: 21554075

  • 61. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD.
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [Abstract] [Full Text] [Related]

  • 62. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations.
    Vasanthanathan P, Olsen L, Jørgensen FS, Vermeulen NP, Oostenbrink C.
    Drug Metab Dispos; 2010 Aug; 38(8):1347-54. PubMed ID: 20413725
    [Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 65. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.
    Koppisetty CA, Frank M, Kemp GJ, Nyholm PG.
    J Chem Inf Model; 2013 Oct 28; 53(10):2559-70. PubMed ID: 24050538
    [Abstract] [Full Text] [Related]

  • 66. 3D-QSAR based on quantum-chemical molecular fields: toward an improved description of halogen interactions.
    Güssregen S, Matter H, Hessler G, Müller M, Schmidt F, Clark T.
    J Chem Inf Model; 2012 Sep 24; 52(9):2441-53. PubMed ID: 22917472
    [Abstract] [Full Text] [Related]

  • 67. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P, Kongsted J, Genheden S, Ryde U.
    Interdiscip Sci; 2010 Mar 24; 2(1):21-37. PubMed ID: 20640794
    [Abstract] [Full Text] [Related]

  • 68. Towards structure-based protein drug design.
    Zhang C, Lai L.
    Biochem Soc Trans; 2011 Oct 24; 39(5):1382-6, suppl 1 p following 1386. PubMed ID: 21936819
    [Abstract] [Full Text] [Related]

  • 69.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 70.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 71. Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization.
    Cavasotto CN.
    Methods Mol Biol; 2020 Oct 24; 2114():257-268. PubMed ID: 32016898
    [Abstract] [Full Text] [Related]

  • 72. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X, Man VH, Ji B, Xie XQ, Wang J.
    J Comput Aided Mol Des; 2019 Jan 24; 33(1):105-117. PubMed ID: 30218199
    [Abstract] [Full Text] [Related]

  • 73.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 74. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J, He X, Zhang JZ.
    J Chem Inf Model; 2013 Jun 24; 53(6):1306-14. PubMed ID: 23651068
    [Abstract] [Full Text] [Related]

  • 75.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 76.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 77. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise.
    Sulea T, Cui Q, Purisima EO.
    J Chem Inf Model; 2011 Sep 26; 51(9):2066-81. PubMed ID: 21714553
    [Abstract] [Full Text] [Related]

  • 78. SwissParam: a fast force field generation tool for small organic molecules.
    Zoete V, Cuendet MA, Grosdidier A, Michielin O.
    J Comput Chem; 2011 Aug 26; 32(11):2359-68. PubMed ID: 21541964
    [Abstract] [Full Text] [Related]

  • 79. Accurate Binding Free Energy Predictions in Fragment Optimization.
    Steinbrecher TB, Dahlgren M, Cappel D, Lin T, Wang L, Krilov G, Abel R, Friesner R, Sherman W.
    J Chem Inf Model; 2015 Nov 23; 55(11):2411-20. PubMed ID: 26457994
    [Abstract] [Full Text] [Related]

  • 80.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 33.