These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


408 related items for PubMed ID: 21555613

  • 1. Fundus autofluorescence in autosomal dominant occult macular dystrophy.
    Fujinami K, Tsunoda K, Hanazono G, Shinoda K, Ohde H, Miyake Y.
    Arch Ophthalmol; 2011 May; 129(5):597-602. PubMed ID: 21555613
    [Abstract] [Full Text] [Related]

  • 2. Fundus autofluorescence in a case of occult macular dystrophy.
    Rasquin F, Van Nechel C, Cordonnier M.
    Bull Soc Belge Ophtalmol; 2009 May; (313):9-12. PubMed ID: 20108567
    [Abstract] [Full Text] [Related]

  • 3. Multimodal imaging of occult macular dystrophy.
    Ahn SJ, Ahn J, Park KH, Woo SJ.
    JAMA Ophthalmol; 2013 Jul; 131(7):880-90. PubMed ID: 24010148
    [Abstract] [Full Text] [Related]

  • 4. Morphologic photoreceptor abnormality in occult macular dystrophy on spectral-domain optical coherence tomography.
    Park SJ, Woo SJ, Park KH, Hwang JM, Chung H.
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3673-9. PubMed ID: 20164460
    [Abstract] [Full Text] [Related]

  • 5. Characterization of stargardt disease using polarization-sensitive optical coherence tomography and fundus autofluorescence imaging.
    Ritter M, Zotter S, Schmidt WM, Bittner RE, Deak GG, Pircher M, Sacu S, Hitzenberger CK, Schmidt-Erfurth UM, Macula Study Group Vienna.
    Invest Ophthalmol Vis Sci; 2013 Sep 27; 54(9):6416-25. PubMed ID: 23882696
    [Abstract] [Full Text] [Related]

  • 6. Autosomal dominant occult macular dystrophy with an RP1L1 mutation (R45W).
    Hayashi T, Gekka T, Kozaki K, Ohkuma Y, Tanaka I, Yamada H, Tsuneoka H.
    Optom Vis Sci; 2012 May 27; 89(5):684-91. PubMed ID: 22504327
    [Abstract] [Full Text] [Related]

  • 7. Microperimetry, fundus autofluorescence, and retinal layer changes in progressing geographic atrophy.
    Pilotto E, Benetti E, Convento E, Guidolin F, Longhin E, Parrozzani R, Midena E.
    Can J Ophthalmol; 2013 Oct 27; 48(5):386-93. PubMed ID: 24093185
    [Abstract] [Full Text] [Related]

  • 8. High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy.
    Ooto S, Hangai M, Takayama K, Arakawa N, Tsujikawa A, Koizumi H, Oshima S, Yoshimura N.
    Invest Ophthalmol Vis Sci; 2011 Jul 25; 52(8):5541-50. PubMed ID: 21642620
    [Abstract] [Full Text] [Related]

  • 9. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies.
    Oishi M, Oishi A, Ogino K, Makiyama Y, Gotoh N, Kurimoto M, Yoshimura N.
    Invest Ophthalmol Vis Sci; 2014 May 20; 55(6):3572-7. PubMed ID: 24845635
    [Abstract] [Full Text] [Related]

  • 10. Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa.
    Wakabayashi T, Sawa M, Gomi F, Tsujikawa M.
    Acta Ophthalmol; 2010 Aug 20; 88(5):e177-83. PubMed ID: 20491687
    [Abstract] [Full Text] [Related]

  • 11. Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration.
    Querques L, Querques G, Forte R, Souied EH.
    Am J Ophthalmol; 2012 Jun 20; 153(6):1110-5. PubMed ID: 22321805
    [Abstract] [Full Text] [Related]

  • 12. A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy.
    Sayegh RG, Simader C, Scheschy U, Montuoro A, Kiss C, Sacu S, Kreil DP, Prünte C, Schmidt-Erfurth U.
    Ophthalmology; 2011 Sep 20; 118(9):1844-51. PubMed ID: 21496928
    [Abstract] [Full Text] [Related]

  • 13. Pathologic Changes of Cone Photoreceptors in Eyes With Occult Macular Dystrophy.
    Nakanishi A, Ueno S, Kawano K, Ito Y, Kominami T, Yasuda S, Kondo M, Tsunoda K, Iwata T, Terasaki H.
    Invest Ophthalmol Vis Sci; 2015 Nov 20; 56(12):7243-9. PubMed ID: 26544792
    [Abstract] [Full Text] [Related]

  • 14. Reticular pattern dystrophy of the retina: a spectral-domain optical coherence tomography analysis.
    Zerbib J, Querques G, Massamba N, Puche N, Tilleul J, Lalloum F, Srour M, Coscas G, Souied EH.
    Am J Ophthalmol; 2013 Dec 20; 156(6):1228-37. PubMed ID: 24075421
    [Abstract] [Full Text] [Related]

  • 15. Parallelism for quantitative image analysis of photoreceptor-retinal pigment epithelium complex alterations in diabetic macular edema.
    Uji A, Murakami T, Unoki N, Ogino K, Horii T, Yoshitake S, Dodo Y, Yoshimura N.
    Invest Ophthalmol Vis Sci; 2014 May 08; 55(5):3361-7. PubMed ID: 24812554
    [Abstract] [Full Text] [Related]

  • 16. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy.
    Parodi MB, Iacono P, Del Turco C, Bandello F.
    Am J Ophthalmol; 2014 Dec 08; 158(6):1247-1252.e2. PubMed ID: 25174897
    [Abstract] [Full Text] [Related]

  • 17. The value of combining autofluorescence and optical coherence tomography in predicting the visual prognosis of sealed macular holes.
    Kao TY, Yang CM, Yeh PT, Huang JY, Yang CH.
    Am J Ophthalmol; 2013 Jul 08; 156(1):149-156.e1. PubMed ID: 23635418
    [Abstract] [Full Text] [Related]

  • 18. Ultra-wide-field fundus autofluorescence in multiple evanescent white dot syndrome.
    Hashimoto H, Kishi S.
    Am J Ophthalmol; 2015 Apr 08; 159(4):698-706. PubMed ID: 25634532
    [Abstract] [Full Text] [Related]

  • 19. [Fundus autofluorescence patterns of drusen in age-related macular degeneration].
    Xuan Y, Zhao PQ, Peng Q.
    Zhonghua Yan Ke Za Zhi; 2010 Aug 08; 46(8):708-13. PubMed ID: 21054995
    [Abstract] [Full Text] [Related]

  • 20. Panoramic autofluorescence: highlighting retinal pathology.
    Slotnick S, Sherman J.
    Optom Vis Sci; 2012 May 08; 89(5):E575-84. PubMed ID: 22446719
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.