These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 21555770
1. Exploring the inhibition of CTX-M-9 by beta-lactamase inhibitors and carbapenems. Bethel CR, Taracila M, Shyr T, Thomson JM, Distler AM, Hujer KM, Hujer AM, Endimiani A, Papp-Wallace K, Bonnet R, Bonomo RA. Antimicrob Agents Chemother; 2011 Jul; 55(7):3465-75. PubMed ID: 21555770 [Abstract] [Full Text] [Related]
2. Inhibition of OXA-1 beta-lactamase by penems. Bethel CR, Distler AM, Ruszczycky MW, Carey MP, Carey PR, Hujer AM, Taracila M, Helfand MS, Thomson JM, Kalp M, Anderson VE, Leonard DA, Hujer KM, Abe T, Venkatesan AM, Mansour TS, Bonomo RA. Antimicrob Agents Chemother; 2008 Sep; 52(9):3135-43. PubMed ID: 18559643 [Abstract] [Full Text] [Related]
3. Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase. Papp-Wallace KM, Bethel CR, Distler AM, Kasuboski C, Taracila M, Bonomo RA. Antimicrob Agents Chemother; 2010 Feb; 54(2):890-7. PubMed ID: 20008772 [Abstract] [Full Text] [Related]
4. Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition. Hinchliffe P, Tooke CL, Bethel CR, Wang B, Arthur C, Heesom KJ, Shapiro S, Schlatzer DM, Papp-Wallace KM, Bonomo RA, Spencer J. mBio; 2022 Jun 28; 13(3):e0179321. PubMed ID: 35612361 [Abstract] [Full Text] [Related]
5. Detection of extended-spectrum β-lactamases producing Enterobacteriaceae using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based MBT STAR-BL software module with β-lactamase inhibition assay depends on the bacterial strains. Ota Y, Furuhashi K, Nagao Y, Nanba T, Yamanaka K, Ishikawa J, Nagura O, Iwaizumi M, Hamada E, Maekawa M. J Microbiol Methods; 2019 Dec 28; 167():105734. PubMed ID: 31689450 [Abstract] [Full Text] [Related]
6. Different intermediate populations formed by tazobactam, sulbactam, and clavulanate reacting with SHV-1 beta-lactamases: Raman crystallographic evidence. Kalp M, Totir MA, Buynak JD, Carey PR. J Am Chem Soc; 2009 Feb 18; 131(6):2338-47. PubMed ID: 19161282 [Abstract] [Full Text] [Related]
7. Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant S130G SHV-1 beta-lactamase. Insights into the mechanism of inhibition. Sulton D, Pagan-Rodriguez D, Zhou X, Liu Y, Hujer AM, Bethel CR, Helfand MS, Thomson JM, Anderson VE, Buynak JD, Ng LM, Bonomo RA. J Biol Chem; 2005 Oct 21; 280(42):35528-36. PubMed ID: 15987690 [Abstract] [Full Text] [Related]
8. Overcoming resistance to beta-lactamase inhibitors: comparing sulbactam to novel inhibitors against clavulanate resistant SHV enzymes with substitutions at Ambler position 244. Thomson JM, Distler AM, Bonomo RA. Biochemistry; 2007 Oct 09; 46(40):11361-8. PubMed ID: 17848099 [Abstract] [Full Text] [Related]
9. Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase. Papp-Wallace KM, Taracila M, Hornick JM, Hujer AM, Hujer KM, Distler AM, Endimiani A, Bonomo RA. Antimicrob Agents Chemother; 2010 Jul 09; 54(7):2867-77. PubMed ID: 20421396 [Abstract] [Full Text] [Related]
10. Susceptibilities of ESBL-producing Enterobacteriaceae to ertapenem, meropenem and piperacillin-tazobactam with and without clavulanic acid. Raveh D, Yinnon AM, Broide E, Rudensky B. Chemotherapy; 2007 Jul 09; 53(3):185-9. PubMed ID: 17347564 [Abstract] [Full Text] [Related]
11. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases. Payne DJ, Cramp R, Winstanley DJ, Knowles DJ. Antimicrob Agents Chemother; 1994 Apr 09; 38(4):767-72. PubMed ID: 8031044 [Abstract] [Full Text] [Related]
12. Class A carbapenemase FPH-1 from Francisella philomiragia. Toth M, Vakulenko V, Antunes NT, Frase H, Vakulenko SB. Antimicrob Agents Chemother; 2012 Jun 09; 56(6):2852-7. PubMed ID: 22450977 [Abstract] [Full Text] [Related]
13. Tazobactam inactivation of SHV-1 and the inhibitor-resistant Ser130 -->Gly SHV-1 beta-lactamase: insights into the mechanism of inhibition. Pagan-Rodriguez D, Zhou X, Simmons R, Bethel CR, Hujer AM, Helfand MS, Jin Z, Guo B, Anderson VE, Ng LM, Bonomo RA. J Biol Chem; 2004 May 07; 279(19):19494-501. PubMed ID: 14757767 [Abstract] [Full Text] [Related]
14. Aspartic acid for asparagine substitution at position 276 reduces susceptibility to mechanism-based inhibitors in SHV-1 and SHV-5 beta-lactamases. Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS. J Antimicrob Chemother; 1999 Jan 07; 43(1):23-9. PubMed ID: 10381097 [Abstract] [Full Text] [Related]
15. High resolution crystal structures of the trans-enamine intermediates formed by sulbactam and clavulanic acid and E166A SHV-1 {beta}-lactamase. Padayatti PS, Helfand MS, Totir MA, Carey MP, Carey PR, Bonomo RA, van den Akker F. J Biol Chem; 2005 Oct 14; 280(41):34900-7. PubMed ID: 16055923 [Abstract] [Full Text] [Related]
16. Tazobactam is a potent inactivator of selected inhibitor-resistant class A beta-lactamases. Bonomo RA, Rudin SA, Shlaes DM. FEMS Microbiol Lett; 1997 Mar 01; 148(1):59-62. PubMed ID: 9066111 [Abstract] [Full Text] [Related]
17. Comparative in-vitro activities of GD-40 and other beta-lactamase inhibitors against TEM-1 and SHV-2 beta-lactamases. Danelon G, Mascaretti O, Radice M, Power P, Calcagno ML, Mata EG, Gutkind G. J Antimicrob Chemother; 1998 Feb 01; 41(2):313-5. PubMed ID: 9533481 [No Abstract] [Full Text] [Related]
18. Why clinically used tazobactam and sulbactam are poor inhibitors of OXA-10 beta-lactamase: Raman crystallographic evidence. Totir MA, Cha J, Ishiwata A, Wang B, Sheri A, Anderson VE, Buynak J, Mobashery S, Carey PR. Biochemistry; 2008 Apr 01; 47(13):4094-101. PubMed ID: 18324783 [Abstract] [Full Text] [Related]
19. A kinetic analysis of the inhibition of FOX-4 β-lactamase, a plasmid-mediated AmpC cephalosporinase, by monocyclic β-lactams and carbapenems. Papp-Wallace KM, Mallo S, Bethel CR, Taracila MA, Hujer AM, Fernández A, Gatta JA, Smith KM, Xu Y, Page MG, Desarbre E, Bou G, Bonomo RA. J Antimicrob Chemother; 2014 Mar 01; 69(3):682-90. PubMed ID: 24235094 [Abstract] [Full Text] [Related]
20. In vitro selection of variants resistant to beta-lactams plus beta-lactamase inhibitors in CTX-M beta-lactamases: predicting the in vivo scenario? Ripoll A, Baquero F, Novais A, Rodríguez-Domínguez MJ, Turrientes MC, Cantón R, Galán JC. Antimicrob Agents Chemother; 2011 Oct 01; 55(10):4530-6. PubMed ID: 21788458 [Abstract] [Full Text] [Related] Page: [Next] [New Search]