These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 21558268
1. Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. Allison SE, D'Elia MA, Arar S, Monteiro MA, Brown ED. J Biol Chem; 2011 Jul 08; 286(27):23708-16. PubMed ID: 21558268 [Abstract] [Full Text] [Related]
2. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid. Koç C, Gerlach D, Beck S, Peschel A, Xia G, Stehle T. J Biol Chem; 2015 Apr 10; 290(15):9874-85. PubMed ID: 25697358 [Abstract] [Full Text] [Related]
3. Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase. Sobhanifar S, Worrall LJ, Gruninger RJ, Wasney GA, Blaukopf M, Baumann L, Lameignere E, Solomonson M, Brown ED, Withers SG, Strynadka NC. Proc Natl Acad Sci U S A; 2015 Feb 10; 112(6):E576-85. PubMed ID: 25624472 [Abstract] [Full Text] [Related]
4. Bacillus subtilis YngB contributes to wall teichoic acid glucosylation and glycolipid formation during anaerobic growth. Wu CH, Rismondo J, Morgan RML, Shen Y, Loessner MJ, Larrouy-Maumus G, Freemont PS, Gründling A. J Biol Chem; 2021 Feb 10; 296():100384. PubMed ID: 33556370 [Abstract] [Full Text] [Related]
5. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A. J Biol Chem; 2010 Apr 30; 285(18):13405-15. PubMed ID: 20185825 [Abstract] [Full Text] [Related]
6. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. Sewell EW, Pereira MP, Brown ED. J Biol Chem; 2009 Aug 07; 284(32):21132-8. PubMed ID: 19520862 [Abstract] [Full Text] [Related]
7. Wall teichoic acid substitution with glucose governs phage susceptibility of Staphylococcus epidermidis. Beck C, Krusche J, Notaro A, Walter A, Kränkel L, Vollert A, Stemmler R, Wittmann J, Schaller M, Slavetinsky C, Mayer C, De Castro C, Peschel A. mBio; 2024 Apr 10; 15(4):e0199023. PubMed ID: 38470054 [Abstract] [Full Text] [Related]
8. Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity. Dai L, Qin L, Hu Y, Huang JW, Hu Z, Min J, Sun Y, Guo RT. Biochem Biophys Res Commun; 2021 Jan 01; 534():73-78. PubMed ID: 33310191 [Abstract] [Full Text] [Related]
9. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Bhavsar AP, Erdman LK, Schertzer JW, Brown ED. J Bacteriol; 2004 Dec 01; 186(23):7865-73. PubMed ID: 15547257 [Abstract] [Full Text] [Related]
10. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. Rismondo J, Percy MG, Gründling A. J Biol Chem; 2018 Mar 02; 293(9):3293-3306. PubMed ID: 29343515 [Abstract] [Full Text] [Related]
12. Genomic Analysis of the Unusual Staphylococcus aureus ST630 Isolates Harboring WTA Glycosyltransferase Genes tarM and tagN. Xiong M, Chen L, Zhao J, Xiao X, Zhou J, Fang F, Li X, Pan Y, Li Y. Microbiol Spectr; 2022 Feb 23; 10(1):e0150121. PubMed ID: 35170993 [Abstract] [Full Text] [Related]
14. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs. Myers CL, Ireland RG, Garrett TA, Brown ED. J Biol Chem; 2015 Jul 31; 290(31):19133-45. PubMed ID: 26085106 [Abstract] [Full Text] [Related]
15. Cloning and heterologous expression of UDP-glycosyltransferase genes from Bacillus subtilis and its application in the glycosylation of ginsenoside Rh1. Luo SL, Dang LZ, Zhang KQ, Liang LM, Li GH. Lett Appl Microbiol; 2015 Jan 31; 60(1):72-8. PubMed ID: 25327709 [Abstract] [Full Text] [Related]
16. Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate): gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. Estrela AI, Pooley HM, de Lencastre H, Karamata D. J Gen Microbiol; 1991 Apr 31; 137(4):943-50. PubMed ID: 1906927 [Abstract] [Full Text] [Related]
17. Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA. Zhang YH, Ginsberg C, Yuan Y, Walker S. Biochemistry; 2006 Sep 12; 45(36):10895-904. PubMed ID: 16953575 [Abstract] [Full Text] [Related]
18. Identification of a Lipoteichoic Acid Glycosyltransferase Enzyme Reveals that GW-Domain-Containing Proteins Can Be Retained in the Cell Wall of Listeria monocytogenes in the Absence of Lipoteichoic Acid or Its Modifications. Percy MG, Karinou E, Webb AJ, Gründling A. J Bacteriol; 2016 Aug 01; 198(15):2029-42. PubMed ID: 27185829 [Abstract] [Full Text] [Related]
19. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. Walter A, Unsleber S, Rismondo J, Jorge AM, Peschel A, Gründling A, Mayer C. J Biol Chem; 2020 Mar 20; 295(12):4024-4034. PubMed ID: 32047114 [Abstract] [Full Text] [Related]